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Motivation (Vector Fields)

[N. Sharp, Y. Soliman, K. Crane. 
SIGGRAPH 2019]

Vector Heat MethodVector Field Design

[M. Fisher, P. Schröder, M. Desbrun, 
H. Hoppe. SIGGRAPH 2007]

Operator Approach

[O. Azencot, M. Ben-Chen, F. Chazal, 
M. Ovsjanikov. SGP 2013]
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Motivation (Scalar Fields)

[J. McCann, N. Pollard. SIGGRAPH 2008] [F. Prada, M. Kazhdan, M. Chuang, H. Hoppe. SIGGRAPH 2018]

Hierarchy ⇒ Efficiency






7

Motivation (Hierarchical Approach)

Hierarchical approach + vector field processing

Carry over existing scalar field processing 
techniques
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Gradient Domain Formulation (0-Forms)

 In gradient-domain processing, we solve for a scalar field 𝜙𝜙 (a.k.a. 0-form) on a 
triangle mesh ℳ by minimizing

𝐸𝐸 𝜙𝜙 = 𝜙𝜙 − 𝜓𝜓 2 + 𝛼𝛼 𝑑𝑑𝑑𝑑 − 𝜈𝜈 2

where 
o 𝜓𝜓: target field
o 𝜈𝜈: target differential
o 𝛼𝛼: balancing weight
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Gradient Domain Formulation (0-Forms)

𝐸𝐸 𝜙𝜙 = 𝜙𝜙 − 𝜓𝜓 2 + 𝛼𝛼 𝑑𝑑𝑑𝑑 − 𝜈𝜈 2

Describes traditional smoothing / sharpening: 
𝜈𝜈 = 𝜆𝜆𝜆𝜆𝜆𝜆

𝜆𝜆 > 1𝜆𝜆 < 1
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Gradient Domain Formulation (0-Forms)

𝐸𝐸 𝜙𝜙 = 𝜙𝜙 − 𝜓𝜓 2 + 𝛼𝛼 𝑑𝑑𝑑𝑑 − 𝜈𝜈 2

[M. Chuang, S. Rusinkiewicz, M. Kazhdan. JCGT 2016]

𝜈𝜈 = 𝜆𝜆𝜆𝜆𝜆𝜆

𝜆𝜆 < 1 𝜆𝜆 > 1
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Discretize using a basis

Gradient Domain Formulation (0-Forms)

arg min
𝜙𝜙

𝐸𝐸 𝜙𝜙 = 𝜙𝜙 − 𝜓𝜓 2 + 𝛼𝛼 𝑑𝑑𝑑𝑑 − 𝜈𝜈 2

⇓

𝐀𝐀𝐀𝐀 = 𝐛𝐛
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A Fourier Perspective

 In gradient-domain processing, we solve for a scalar field 𝜙𝜙 (a.k.a. 0-form) on a 
triangle mesh ℳ by minimizing

𝐸𝐸 𝜙𝜙 = 𝜙𝜙 − 𝜓𝜓 2 + 𝛼𝛼 𝑑𝑑𝑑𝑑 − 𝜈𝜈 2

where 
o 𝜓𝜓: target field
o 𝜈𝜈: target differential
o 𝛼𝛼: balancing weight

[P. Bhat, B. Curless, M. Cohen, C. L. Zitnick. ECCV 2008]

If 𝜈𝜈 = 𝑑𝑑𝑑𝑑, 𝜂𝜂 a 0-form

Then solving for 𝜙𝜙 is blending
• Low frequency components of 𝜓𝜓
• High frequency components of 𝜂𝜂
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A Fourier Perspective

 In gradient-domain processing, we solve for a scalar field 𝜙𝜙 (a.k.a. 0-form) on a 
triangle mesh ℳ by minimizing

𝐸𝐸 𝜙𝜙 = 𝜙𝜙 − 𝜓𝜓 2 + 𝛼𝛼 𝑑𝑑𝑑𝑑 − 𝜈𝜈 2

where 
o 𝜓𝜓: target field  (lower frequency)
o 𝜈𝜈: target differential (higher frequency)
o 𝛼𝛼: balancing weight

[P. Bhat, B. Curless, M. Cohen, C. L. Zitnick. ECCV 2008]
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Gradient Domain Formulation (1-Forms)

 In gradient-domain processing, we solve for a 1-form 𝜔𝜔 on a triangle mesh ℳ by 
minimizing

𝐸𝐸 𝜔𝜔 = 𝜔𝜔 − 𝜇𝜇 2 + 𝛼𝛼 𝑑𝑑𝑑𝑑 − 𝜚𝜚 2 + 𝛿𝛿𝛿𝛿 − 𝜑𝜑 2

where 
o 𝜇𝜇: target field   (lower frequency)
o 𝜚𝜚: target differential  (higher frequency – curl)
o 𝜑𝜑: target co-differential (higher frequency – divergence)
o 𝛼𝛼: balancing weight



16

Gradient Domain Formulation (1-Forms)

𝐸𝐸 𝜔𝜔 = 𝜔𝜔 − 𝜇𝜇 2 + 𝛼𝛼 𝑑𝑑𝑑𝑑 − 𝜚𝜚 2 + 𝛿𝛿𝛿𝛿 − 𝜑𝜑 2

[O. Stein, M. Wardetzky, A. Jacobson, E. Grinspun. SGP 2020]

𝜚𝜚 = 𝜆𝜆𝜆𝜆𝜆𝜆,𝜑𝜑 = 𝜆𝜆𝜆𝜆𝜆𝜆
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Discretize using a basis

Gradient Domain Formulation (1-Forms)

arg min
𝜔𝜔

𝐸𝐸 𝜔𝜔 = 𝜔𝜔 − 𝜇𝜇 2 + 𝛼𝛼 𝑑𝑑𝑑𝑑 − 𝜚𝜚 2 + 𝛿𝛿𝛿𝛿 − 𝜑𝜑 2

⇓

𝐀𝐀𝐀𝐀 = 𝐛𝐛

𝐀𝐀 is Symmetric Positive Definite 
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Given the linear system 𝐀𝐀𝐀𝐀 = 𝐛𝐛, we are interested in solving it 
efficiently.
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Hierarchical Approach

(Iterative) Fine Solve (Iterative) Fine Solve

(Direct) Coarse Solve

Restriction Prolongation
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Prolongation Matrix

 𝐏𝐏 = {𝑃𝑃𝑖𝑖𝑖𝑖} Describes the coarse basis vectors as linear 
combination of the finer ones

 Fine basis: {𝜙𝜙𝑖𝑖}, then coarse basis { �𝜙𝜙𝑖𝑖} with

�𝜙𝜙𝑖𝑖 = �
𝑚𝑚

𝑃𝑃𝑚𝑚𝑚𝑚𝜙𝜙𝑚𝑚

 Roles:
o Restrict from fine to coarse
o Define coarse system matrix
o Prolong from coarse to fine

Update Update

Solve
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Which (fine) basis? 

Which prolongation matrix?

Our approach: 1-form basis that is constructed 
from a 0-form basis, and that induces a 1-form 

prolongation matrix. 
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𝜙𝜙𝑣𝑣 𝑢𝑢 = 0

0-Form Basis (𝛀𝛀𝟎𝟎)

 {𝜙𝜙𝑣𝑣}: hat basis functions at each vertex

𝜙𝜙𝑣𝑣 𝑣𝑣 = 1𝑣𝑣
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Given:
 Coarse and fine meshes
 A map from the fine to the coarse mesh

Goal:
 Pull back coarse basis functions to the fine mesh
 “Project” pulled back functions onto the fine basis

0-Form Prolongation Matrix Update Update

Solve
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Existing Mesh Hierarchies

Mesh simplification [M. Garland, P. S. Heckbert. SIGGRAPH 1997]

Self-intrinsic parameterization [H. T. D. Liu, J. E. Zhang, M. Ben-Chen, A. Jacobson. SIGGRAPH 2021]
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Which (fine) basis?

Ω0 ⇒ Ω1
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Harmonic-Free 1-Form

 Given 0-form basis functions {𝜙𝜙𝑖𝑖}, the harmonic-free basis {𝜔𝜔𝑖𝑖} is defined as

𝜔𝜔𝑖𝑖 = 𝑑𝑑𝜙𝜙𝑖𝑖 + 𝛿𝛿 ⋆ 𝜙𝜙𝑖𝑖

𝑑𝑑𝜙𝜙𝑖𝑖 𝛿𝛿 ⋆ 𝜙𝜙𝑖𝑖
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Whitney 1-Form

 Given 0-form basis functions {𝜙𝜙𝑖𝑖}, the Whitney 1-form basis {𝜙𝜙𝑖𝑖𝑖𝑖} is defined as

𝜙𝜙𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑖𝑖 ⋅ 𝑑𝑑𝜙𝜙𝑗𝑗 − 𝜙𝜙𝑗𝑗 ⋅ 𝑑𝑑𝜙𝜙𝑖𝑖

𝜙𝜙𝑖𝑖𝑖𝑖
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Which prolongation matrix?

𝐏𝐏0 ⇒ 𝐏𝐏1
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Harmonic-Free 1-Form

Given:
 Fine and coarse 0-form spaces: Ω0, �Ω0 (defined by the 0-form prolongation 𝐏𝐏0)
 Harmonic-free 1-form space: Ω1 ≈ Ω0 ⊕ Ω0

Goal:
 We can also define a coarse 1-form space: �Ω1 ≈ �Ω0 ⊕ �Ω0

 It induces a 1-form prolongation
𝐏𝐏1 ≈ 𝐏𝐏0 ⊕ 𝐏𝐏0

𝜔𝜔𝑖𝑖 = 𝑑𝑑𝜙𝜙𝑖𝑖 + 𝛿𝛿 ⋆ 𝜙𝜙𝑖𝑖
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Whitney 1-Form

Given:
 Fine and coarse 0-form spaces: Ω0, �Ω0 (defined by the 0-form prolongation 𝐏𝐏0)
 Whitney-free 1-form space: Ω1 ≈ Ω0 ∧ Ω0

Goal:
 We can also define a coarse 1-form space: �Ω1 ≈ �Ω0 ∧ �Ω0

 It induces a 1-form prolongation
𝐏𝐏1 ≈ 𝐏𝐏0 ∧ 𝐏𝐏0

𝜙𝜙𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑖𝑖 ⋅ 𝑑𝑑𝜙𝜙𝑗𝑗 − 𝜙𝜙𝑗𝑗 ⋅ 𝑑𝑑𝜙𝜙𝑖𝑖
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Generalization

Observation:
 1-form space constructions

o Hamonic-free 1-form: Ω1 ≈ Ω0 ⊕ Ω0
o Whitney 1-form: Ω1 ≈ Ω0 ∧ Ω0

 Induced 1-form prolongations:
o Harmonic-free 1-form: 𝐏𝐏1 ≈ 𝐏𝐏0 ⊕ 𝐏𝐏0

o Whitney 1-form: 𝐏𝐏1 ≈ 𝐏𝐏0 ∧ 𝐏𝐏0

Generalization:
o ℱ 𝑉𝑉 = ⊕𝑖𝑖⊗𝑙𝑙𝑖𝑖 𝑉𝑉, ℱ a functor on the category of vector spaces
o ℱ 𝐏𝐏 : an induced 1-form prolongation
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Our Approach

Goal:
 Leverage existing 0-form hierarchies

Observation:
 Some existing 1-form spaces can be viewed as a multi-linear instances of a 0-form space

Show:
 Multi-linearity allows extending the 0-form prolongation to a 1-form prolongation

We propose using this to design a general vector field processing 
hierarchy that can reuse existing 0-form hierarchies
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Hierarchical Approach

(Iterative) Fine Solve (Iterative) Fine Solve

(Direct) Coarse Solve

Restriction Prolongation

𝐏𝐏
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Relaxation Scheme

Split Methods:
Decompose 𝐀𝐀 into diagonal and triangular components: 𝐀𝐀 = 𝐋𝐋 + 𝐃𝐃 + 𝐋𝐋⊤

Iteratively update:
𝐱𝐱 ← 𝐍𝐍−1 𝐛𝐛 − 𝐀𝐀 − 𝐍𝐍 𝐱𝐱

 Damped Jacobi   𝐍𝐍 = 1
𝜎𝜎
𝐃𝐃

 Successive over-relaxation (SOR) 𝐍𝐍 = 𝐋𝐋 + 1
𝜎𝜎
𝐃𝐃

Exact Methods:
 Conjugate gradient

Update Update

Solve
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Hierarchical Approach

(Iterative) Fine Solve (Iterative) Fine Solve

(Direct) Coarse Solve

Restriction Prolongation
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Smoothed Prolongation

 A typical step used in algebraic multigrid

𝐏𝐏 ← 𝐒𝐒𝐒𝐒

𝐒𝐒 = 𝐈𝐈 − 𝐍𝐍−1𝐀𝐀
where 𝐍𝐍 is defined as

 A relaxation smoothing step as in [P. Vanek, J. Mandel, M. Brezina. Computing 1996]
 To maintain the same sparsity, we discard matrix coefficients that are originally zeros

Update Update

Solve
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Hierarchical Approach

(Iterative) Fine Solve (Iterative) Fine Solve

(Direct) Coarse Solve

Restriction Prolongation

𝐏𝐏

Solution Update
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Solution Update

Inspiration: 
 Krylov Subspace Method

Given:
 𝐀𝐀: system matrix
 𝐛𝐛: right hand side

Goal:
 Construct the Krylov subspace 𝐾𝐾𝑛𝑛 ≔ Span{𝐛𝐛,𝐀𝐀𝐀𝐀,𝐀𝐀2𝐛𝐛,⋯𝐀𝐀𝑛𝑛−1𝐛𝐛}
 Find 𝐱𝐱 ∈ 𝐾𝐾𝑛𝑛 that best solves 𝐀𝐀𝐀𝐀 = 𝐛𝐛

Update Update

Solve
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Krylov Subspace Update

Idea:
 We construct the Krylov subspace using the estimate at each 

V-Cycle iteration:

𝐾𝐾𝑛𝑛 = Span{𝐱𝐱0, 𝐱𝐱1, 𝐱𝐱2,⋯ , 𝐱𝐱𝑛𝑛−1}

 Find 𝐱𝐱 ∈ 𝐾𝐾𝑛𝑛 that best solves 𝐀𝐀𝐀𝐀 = 𝐛𝐛

Update Update

Solve
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Models
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Convergence Study (0-Form System)

 An implicit scalar diffusion step (𝜈𝜈 = 0):

 arg min
𝜙𝜙

𝐸𝐸 𝜙𝜙 = 𝜙𝜙 − 𝜓𝜓 2 + 𝛼𝛼 𝑑𝑑𝑑𝑑 2
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0-Form System Convergence
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1.E-02

1.E+00

Mesh Simplification

Self-Parameterization
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Convergence Study (1-Form System)

 An implicit vector diffusion step (𝜚𝜚 = 0, 𝜑𝜑 = 0):

 arg min
𝜔𝜔

𝐸𝐸 𝜔𝜔 = 𝜔𝜔 − 𝜇𝜇 2 + 𝛼𝛼 𝑑𝑑𝑑𝑑 2 + 𝛿𝛿𝛿𝛿 2
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1-Form System Convergence

1.E-16
1.E-14
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Convergence Comparison (0-Form/1-Form)
Iterations required to achieve errors < 10−8 (𝛼𝛼 = 0.0001):

Models
Mesh Simplification Self-Parameterization

Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖 Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖

Plane 1.00 ⋅ 10−16 / 1.45 ⋅ 10−16 2 / 9 1.00 ⋅ 10−16 / 1.43 ⋅ 10−16 2 / 8

Sphere 1.00 ⋅ 10−16 / 1.18 ⋅ 10−14 2 / 11 1.00 ⋅ 10−16 / 2.93 ⋅ 10−15 2 / 11

Torus 1.00 ⋅ 10−16 / 1.66 ⋅ 10−15 4 / 9 1.00 ⋅ 10−16 / 1.00 ⋅ 10−16 3 / 6

4-Torus 1.00 ⋅ 10−16 / 3.22 ⋅ 10−13 4 / 20 1.00 ⋅ 10−16 / 1.00 ⋅ 10−16 4 / 7

Hand 1.00 ⋅ 10−16 / 3.42 ⋅ 10−16 2 / 16 1.00 ⋅ 10−16 / 1.00 ⋅ 10−16 2 / 11

Bimba 1.00 ⋅ 10−16 / 6.45 ⋅ 10−15 3 / 12 1.00 ⋅ 10−16 / 3.54 ⋅ 10−16 2 / 7

Rooster 1.00 ⋅ 10−16 / 1.21 ⋅ 10−16 2 / 8 1.00 ⋅ 10−16 / 1.00 ⋅ 10−16 2 / 6

Fertility 1.00 ⋅ 10−16 / 7.69 ⋅ 10−13 2 / 15 1.00 ⋅ 10−16 / 4.02 ⋅ 10−14 2 / 12
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Convergence Comparison (0-Form/1-Form)
Iterations required to achieve errors < 10−8 (𝛼𝛼 = 1):

Models
Mesh Simplification Self-Parameterization

Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖 Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖

Plane 1.00 ⋅ 57−13 / 1.56 ⋅ 10−1 2 / >50 1.56 ⋅ 10−13 / 1.43 ⋅ 10−1 2 / >50

Sphere 2.81 ⋅ 10−16 / 1.64 ⋅ 10−1 2 / >50 4.64 ⋅ 10−16 / 1.60 ⋅ 10−1 2 / >50

Torus 1.34 ⋅ 10−15 / 1.58 ⋅ 10−1 6 / >50 1.30 ⋅ 10−15 / 1.46 ⋅ 10−1 3 / >50

4-Torus 2.55 ⋅ 10−16 / 4.47 ⋅ 10−1 5 / >50 3.15 ⋅ 10−16 / 4.29 ⋅ 10−1 3 / >50

Hand 1.00 ⋅ 10−16 / 1.15 ⋅ 10−1 9 / >50 1.00 ⋅ 10−16 / 1.09 ⋅ 10−1 4 / >50

Bimba 1.96 ⋅ 10−16 / 1.31 ⋅ 10−1 18 / >50 5.03 ⋅ 10−16 / 1.07 ⋅ 10−1 2 / >50

Rooster 5.24 ⋅ 10−16 / 4.18 ⋅ 10−1 9 / >50 3.67 ⋅ 10−16 / 4.14 ⋅ 10−1 3 / >50

Fertility 1.00 ⋅ 10−16 / 6.19 ⋅ 10−1 3 / >50 1.75 ⋅ 10−16 / 6.15 ⋅ 10−1 2 / >50
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Relaxation Scheme Comparison
For big 𝛼𝛼, the relaxation scheme converge poorly
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Fastest Relaxation Convergence
Iterations required to achieve errors < 10−8 (𝛼𝛼 = 0.0001):

Models
Mesh Simplification Self-Parameterization

Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖 Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖

Plane 1.45 ⋅ 10−16 1.20 ⋅ 10−16 9  6 1.43 ⋅ 10−16 2.22 ⋅ 10−16 8  5

Sphere 1.18 ⋅ 10−14 1.00 ⋅ 10−16 11  8 2.93 ⋅ 10−15 1.00 ⋅ 10−16 11  7

Torus 1.66 ⋅ 10−15 1.00 ⋅ 10−16 14  5 1.00 ⋅ 10−16 1.00 ⋅ 10−16 6  4

4-Torus 3.22 ⋅ 10−131.00 ⋅ 10−16 20  9 1.00 ⋅ 10−16 1.00 ⋅ 10−16 7  4

Hand 3.42 ⋅ 10−161.00 ⋅ 10−16 16  6 1.00 ⋅ 10−16 1.00 ⋅ 10−16 11  5

Bimba 6.45 ⋅ 10−15 1.65 ⋅ 10−16 12  7 3.54 ⋅ 10−16 1.67 ⋅ 10−16 7  5

Rooster 1.21 ⋅ 10−16 1.00 ⋅ 10−16 8  4 1.00 ⋅ 10−16 1.00 ⋅ 10−16 6  3

Fertility 7.69 ⋅ 10−13 3.13 ⋅ 10−16 15  8 4.02 ⋅ 10−14 3.56 ⋅ 10−16 12  8

Update Update

Solve
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Fastest Relaxation Convergence
Iterations required to achieve errors < 10−8 (𝛼𝛼 = 1):

Models
Mesh Simplification Self-Parameterization

Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖 Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖

Plane 1.56 ⋅ 10−11.34 ⋅ 10−1 >50  >50 1.43 ⋅ 10−1 1.24 ⋅ 10−1 >50  >50

Sphere 1.64 ⋅ 10−1 1.36 ⋅ 10−1 >50  >50 1.60 ⋅ 10−1 1.33 ⋅ 10−1 >50  >50

Torus 1.58 ⋅ 10−1 1.37 ⋅ 10−1 >50  >50 1.46 ⋅ 10−1 1.29 ⋅ 10−1 >50  >50

4-Torus 4.47 ⋅ 10−1 4.35 ⋅ 10−1 >50  >50 4.29 ⋅ 10−1 4.17 ⋅ 10−1 >50  >50

Hand 1.15 ⋅ 10−1 7.29 ⋅ 10−2 >50  >50 1.09 ⋅ 10−1 6.68 ⋅ 10−2 >50  >50

Bimba 1.31 ⋅ 10−1 1.03 ⋅ 10−1 >50  >50 1.07 ⋅ 10−1 8.78 ⋅ 10−2 >50  >50

Rooster 4.18 ⋅ 10−1 4.00 ⋅ 10−1 >50  >50 4.14 ⋅ 10−1 3.98 ⋅ 10−1 >50  >50

Fertility 6.19 ⋅ 10−1 6.06 ⋅ 10−1 >50  >50 6.15 ⋅ 10−1 6.03 ⋅ 10−1 >50  >50

Update Update

Solve
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Smoothed Prolongation Convergence
Iterations required to achieve errors < 10−8 (𝛼𝛼 = 0.0001):

Models
Mesh Simplification Self-Parameterization

Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖 Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖

Plane 1.45 ⋅ 10−16 1.90 ⋅ 10−16 9  7 1.43 ⋅ 10−16 1.00 ⋅ 10−16 8  6

Sphere 1.18 ⋅ 10−14 1.00 ⋅ 10−16 11  7 2.93 ⋅ 10−15 1.00 ⋅ 10−16 11  7

Torus 1.66 ⋅ 10−15 1.14 ⋅ 10−16 14  7 1.00 ⋅ 10−16 1.00 ⋅ 10−16 6  5

4-Torus 3.22 ⋅ 10−132.92 ⋅ 10−16 20  15 1.00 ⋅ 10−16 1.00 ⋅ 10−16 7  6

Hand 3.42 ⋅ 10−161.00 ⋅ 10−16 16  15 1.00 ⋅ 10−16 1.00 ⋅ 10−16 11  7

Bimba 6.45 ⋅ 10−15 5.4 ⋅ 10−16 12  9 3.54 ⋅ 10−16 9.18 ⋅ 10−16 7  5

Rooster 1.21 ⋅ 10−16 1.46 ⋅ 10−16 8  7 1.00 ⋅ 10−16 1.21 ⋅ 10−16 6  5

Fertility 7.69 ⋅ 10−13 3.61 ⋅ 10−11 15  15 4.02 ⋅ 10−14 1.99 ⋅ 10−13 12  14

Update Update

Solve
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Smoothed Prolongation Convergence
Iterations required to achieve errors < 10−8 (𝛼𝛼 = 1):

Models
Mesh Simplification Self-Parameterization

Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖 Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖

Plane 1.56 ⋅ 10−11.35 ⋅ 10−1 >50  >50 1.43 ⋅ 10−1 1.25 ⋅ 10−1 >50  >50

Sphere 1.64 ⋅ 10−1 1.24 ⋅ 10−1 >50  >50 1.60 ⋅ 10−1 1.19 ⋅ 10−1 >50  >50

Torus 1.58 ⋅ 10−1 1.39 ⋅ 10−1 >50  >50 1.46 ⋅ 10−1 1.21 ⋅ 10−1 >50  >50

4-Torus 4.47 ⋅ 10−1 4.41 ⋅ 10−1 >50  >50 4.29 ⋅ 10−1 4.18 ⋅ 10−1 >50  >50

Hand 1.15 ⋅ 10−1 8.56 ⋅ 10−2 >50  >50 1.09 ⋅ 10−1 7.08 ⋅ 10−2 >50  >50

Bimba 1.31 ⋅ 10−1 1.09 ⋅ 10−1 >50  >50 1.07 ⋅ 10−1 7.84 ⋅ 10−2 >50  >50

Rooster 4.18 ⋅ 10−1 4.13 ⋅ 10−1 >50  >50 4.14 ⋅ 10−1 3.98 ⋅ 10−1 >50  >50

Fertility 6.19 ⋅ 10−1 6.13 ⋅ 10−1 >50  >50 6.15 ⋅ 10−1 6.05 ⋅ 10−1 >50  >50

Update Update

Solve
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Krylov Subspace Update Convergence
Iterations required to achieve errors < 10−8 (𝛼𝛼 = 0.0001):

Models
Mesh Simplification Self-Parameterization

Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖 Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖

Plane 1.45 ⋅ 10−16 1.20 ⋅ 10−16 9  5 1.43 ⋅ 10−16 2.22 ⋅ 10−16 8  5

Sphere 1.18 ⋅ 10−14 1.00 ⋅ 10−16 11  6 2.93 ⋅ 10−15 1.00 ⋅ 10−16 11  6

Torus 1.66 ⋅ 10−15 1.00 ⋅ 10−16 14  5 1.00 ⋅ 10−16 1.00 ⋅ 10−16 6  4

4-Torus 3.22 ⋅ 10−131.00 ⋅ 10−16 20  8 1.00 ⋅ 10−16 1.00 ⋅ 10−16 7  5

Hand 3.42 ⋅ 10−161.00 ⋅ 10−16 16  10 1.00 ⋅ 10−16 1.00 ⋅ 10−16 11  5

Bimba 6.45 ⋅ 10−15 1.65 ⋅ 10−16 12  6 3.54 ⋅ 10−16 1.67 ⋅ 10−16 7  4

Rooster 1.21 ⋅ 10−16 1.00 ⋅ 10−16 8  5 1.00 ⋅ 10−16 1.00 ⋅ 10−16 6  4

Fertility 7.69 ⋅ 10−13 3.13 ⋅ 10−16 15  7 4.02 ⋅ 10−14 3.56 ⋅ 10−16 12  6

Update Update

Solve
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Krylov Subspace Update Convergence
Iterations required to achieve errors < 10−8 (𝛼𝛼 = 1):

Models
Mesh Simplification Self-Parameterization

Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖 Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖

Plane 1.56 ⋅ 10−11.34 ⋅ 10−1 >50  >50 1.43 ⋅ 10−1 1.24 ⋅ 10−1 >50  >50

Sphere 1.64 ⋅ 10−1 1.36 ⋅ 10−1 >50  >50 1.60 ⋅ 10−1 1.33 ⋅ 10−1 >50  >50

Torus 1.58 ⋅ 10−1 1.37 ⋅ 10−1 >50  >50 1.46 ⋅ 10−1 1.29 ⋅ 10−1 >50  >50

4-Torus 4.47 ⋅ 10−1 4.35 ⋅ 10−1 >50  >50 4.29 ⋅ 10−1 4.17 ⋅ 10−1 >50  >50

Hand 1.15 ⋅ 10−1 7.29 ⋅ 10−2 >50  >50 1.09 ⋅ 10−1 6.68 ⋅ 10−2 >50  >50

Bimba 1.31 ⋅ 10−1 1.03 ⋅ 10−1 >50  >50 1.07 ⋅ 10−1 8.78 ⋅ 10−2 >50  >50

Rooster 4.18 ⋅ 10−1 4.00 ⋅ 10−1 >50  >50 4.14 ⋅ 10−1 3.98 ⋅ 10−1 >50  >50

Fertility 6.19 ⋅ 10−1 6.06 ⋅ 10−1 >50  >50 6.15 ⋅ 10−1 6.03 ⋅ 10−1 >50  >50

Update Update

Solve
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SOR + Krylov Subspace Update
Iterations required to achieve errors < 10−8 (𝛼𝛼 = 0.0001):

Models
Mesh Simplification Self-Parameterization

Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖 Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖

Plane 1.45 ⋅ 10−16 1.42 ⋅ 10−15 9  4 1.43 ⋅ 10−16 2.2 ⋅ 10−16 8  4

Sphere 1.18 ⋅ 10−14 1.43 ⋅ 10−16 11  5 2.93 ⋅ 10−15 6.2 ⋅ 10−16 11  5

Torus 1.66 ⋅ 10−15 3.85 ⋅ 10−16 14  4 1.00 ⋅ 10−16 9.51 ⋅ 10−16 6  3

4-Torus 3.22 ⋅ 10−139.12 ⋅ 10−16 20  5 1.00 ⋅ 10−16 5.36 ⋅ 10−16 7  4

Hand 3.42 ⋅ 10−163.06 ⋅ 10−16 16  3 1.00 ⋅ 10−16 1.00 ⋅ 10−16 11  3

Bimba 6.45 ⋅ 10−15 1.06 ⋅ 10−15 12  5 3.54 ⋅ 10−16 7.9 ⋅ 10−16 7  4

Rooster 1.21 ⋅ 10−16 1.72 ⋅ 10−16 8  3 1.00 ⋅ 10−16 1.00 ⋅ 10−16 6  3

Fertility 7.69 ⋅ 10−13 3.75 ⋅ 10−16 15  5 4.02 ⋅ 10−14 2.94 ⋅ 10−16 12  5
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SOR + Krylov Subspace Update
Iterations required to achieve errors < 10−8 (𝛼𝛼 = 1):

Models
Mesh Simplification Self-Parameterization

Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖 Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖

Plane 1.56 ⋅ 10−12.86 ⋅ 10−4 >50  >50 1.43 ⋅ 10−1 2.39 ⋅ 10−4 >50  >50

Sphere 1.64 ⋅ 10−1 1.24 ⋅ 10−6 >50  >50 1.60 ⋅ 10−1 2.45 ⋅ 10−6 >50  >50

Torus 1.58 ⋅ 10−1 1.77 ⋅ 10−2 >50  >50 1.46 ⋅ 10−1 1.30 ⋅ 10−2 >50  >50

4-Torus 4.47 ⋅ 10−1 5.20 ⋅ 10−2 >50  >50 4.29 ⋅ 10−1 7.03 ⋅ 10−3 >50  >50

Hand 1.15 ⋅ 10−1 5.65 ⋅ 10−7 >50  >50 1.09 ⋅ 10−1 2.90 ⋅ 10−7 >50  >50

Bimba 1.31 ⋅ 10−1 3.32 ⋅ 10−4 >50  >50 1.07 ⋅ 10−1 1.03 ⋅ 10−4 >50  >50

Rooster 4.18 ⋅ 10−1 1.43 ⋅ 10−3 >50  >50 4.14 ⋅ 10−1 7.73 ⋅ 10−4 >50  >50

Fertility 6.19 ⋅ 10−1 1.40 ⋅ 10−1 >50  >50 6.15 ⋅ 10−1 1.19 ⋅ 10−1 >50  >50
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All
Iterations required to achieve errors < 10−8 (𝛼𝛼 = 0.0001):

Models
Mesh Simplification Self-Parameterization

Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖 Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖

Plane 1.45 ⋅ 10−16 1.04 ⋅ 10−15 9  4 1.43 ⋅ 10−16 3.11 ⋅ 10−16 8  3

Sphere 1.18 ⋅ 10−14 4.51 ⋅ 10−16 11  4 2.93 ⋅ 10−15 2.19 ⋅ 10−16 11  4

Torus 1.66 ⋅ 10−15 3.98 ⋅ 10−16 14  4 1.00 ⋅ 10−16 1.40 ⋅ 10−16 6  3

4-Torus 3.22 ⋅ 10−134.80 ⋅ 10−16 20  5 1.00 ⋅ 10−16 5.67 ⋅ 10−16 7  4

Hand 3.42 ⋅ 10−161.07 ⋅ 10−16 16  3 1.00 ⋅ 10−16 1.00 ⋅ 10−16 11  3

Bimba 6.45 ⋅ 10−15 7.47 ⋅ 10−16 12  4 3.54 ⋅ 10−16 2.88 ⋅ 10−16 7  4

Rooster 1.21 ⋅ 10−16 3.73 ⋅ 10−16 8  3 1.00 ⋅ 10−16 2.99 ⋅ 10−16 6  3

Fertility 7.69 ⋅ 10−13 1.00 ⋅ 10−16 15  5 4.02 ⋅ 10−14 4.16 ⋅ 10−16 12  5
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All
Iterations required to achieve errors < 10−8 (𝛼𝛼 = 1):

Models
Mesh Simplification Self-Parameterization

Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖 Err at 50 its. Its < 𝟏𝟏 ⋅ 𝟏𝟏𝟏𝟏−𝟖𝟖

Plane 1.56 ⋅ 10−13.61 ⋅ 10−5 >50  >50 1.43 ⋅ 10−1 2.40 ⋅ 10−5 >50  >50

Sphere 1.64 ⋅ 10−1 5.60 ⋅ 10−8 >50  >49 1.60 ⋅ 10−1 5.77 ⋅ 10−8 >50  49

Torus 1.58 ⋅ 10−1 7.51 ⋅ 10−3 >50  >50 1.46 ⋅ 10−1 4.18 ⋅ 10−3 >50  >50

4-Torus 4.47 ⋅ 10−1 2.35 ⋅ 10−2 >50  >50 4.29 ⋅ 10−1 8.89 ⋅ 10−3 >50  >50

Hand 1.15 ⋅ 10−1 4.40 ⋅ 10−8 >50  >49 1.09 ⋅ 10−1 2.93 ⋅ 10−8 >50  >47

Bimba 1.31 ⋅ 10−1 3.14 ⋅ 10−5 >50  >50 1.07 ⋅ 10−1 9.59 ⋅ 10−6 >50  >50

Rooster 4.18 ⋅ 10−1 1.00 ⋅ 10−3 >50  >50 4.14 ⋅ 10−1 1.65 ⋅ 10−4 >50  >50

Fertility 6.19 ⋅ 10−1 1.02 ⋅ 10−1 >50  >50 6.15 ⋅ 10−1 6.78 ⋅ 10−2 >50  >50
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Multigrid – Prolongation Matrix

 Ideal multigrid:
o Relaxation solves high-frequency
o Coarse level solves low-frequency

 Ideal prolongation Matrix:
o Coarse functions should be low-frequency
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Analyzing Prolongation Matrices

Idea:
 Check that functions that “appear” low-frequency in the coarse space are low-

frequency in the fine space

Implementation:
 Solve (Laplacian) eigenvalue problem at each level

 Project the coarse eigenfunctions �𝐞𝐞𝑖𝑖  onto the finest eigenfunctions 𝐞𝐞𝐣𝐣 :

𝐶𝐶𝑖𝑖𝑖𝑖 = ⟨�𝐞𝐞𝑖𝑖 ,𝐞𝐞𝑗𝑗⟩

Expectation:
 For smaller values of (𝑖𝑖, 𝑗𝑗), the matrix 𝐶𝐶 should look diagonal
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Mesh Simplification 𝐶𝐶 (Rooster)
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Self-Parameterization 𝐶𝐶 (Rooster)
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Mesh Simplification 𝐶𝐶 (Fertility)
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Self-Parameterization 𝐶𝐶 (Fertility)
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Outline

Hierarchical Gradient Domain Vector Field Processing

1. Why are we interested in vector field processing?

2. How do we perform vector field processing in the gradient domain?

3. How do we design a hierarchy for vector field processing?

4. How do we make the hierarchical solver efficient?

5. Conclusion
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Conclusion

1. Why are we interested in (hierarchical) vector field processing?

 This thesis is the first to look into a hierarchical approach for vector field processing
o Wide range applications
o Real-time performance

 Applicable to improve the performance of the earlier work finding shape 
correspondences, where optical flow is used [S. C. Lee, M. Kazhdan. SGP 2019]
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Conclusion

2. How do we perform vector field processing in the gradient domain?

 Formulate as a gradient domain problem using exterior derivatives
 Discretize using a basis, resulting in solving a linear system

𝐀𝐀𝐀𝐀 = 𝐛𝐛

 We propose to use any 1-form basis that is constructed from a 0-form basis for the 
discretization
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Conclusion

3. How do we design a hierarchy for vector field processing?

 We show that the multi-linear formulation allows us to naturally extend the 0-form 
prolongation to a 1-form prolongation
o “Naturally” ⇒ commutes with differentiation

 We propose to use this 1-form prolongation for the multigrid method

 Our generalization can be applied to other 0-form-based-constructed hierarchy, such 
as the 2-form hierarchy in our work (just accepted today) [M. Kohlbrenner, S. C. Lee, 
M. Kazhdan, M. Alexa. SGP 2023]. 
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Conclusion

4. How do we make the hierarchical solver converge quickly?

Challenge:
 Slow convergence

Solutions: 
 Successive over-relaxation
 Prolongation smoothing
 Krylov subspace update 
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Future Work

Remaining Challenges:
 Slow convergence for big 𝛼𝛼
 Coarse basis functions do not “focus” on the low-frequency

Possible Directions:
 Pre-conditioning
 Hierarchy (mesh simplification) customized for 1-form prolongation
 Modified 0-form prolongation matrix
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