

Hierarchical Gradient Domain Vector Field Processing

Sing Chun Lee

This Photo by Unknown Author is licensed under CC BY-SA

Outline

Hierarchical Gradient Domain Vector Field Processing

- 1. Why are we interested in **vector field processing**?
- 2. How do we perform vector field processing in the gradient domain?
- 3. How do we design a **hierarchy** for vector field processing?
- 4. How do we make the hierarchical solver **converge** quickly?

5. Conclusion

Outline

Hierarchical Gradient Domain Vector Field Processing

- 1. Why are we interested in **vector field processing**?
- 2. How do we perform vector field processing in the gradient domain?
- 3. How do we design a **hierarchy** for vector field processing?
- 4. How do we make the hierarchical solver **converge** quickly?

5. Conclusion

Motivation (Vector Fields)

Vector Field Design

Operator Approach

Vector Heat Method

[M. Fisher, P. Schröder, M. Desbrun, H. Hoppe. SIGGRAPH 2007] [O. Azencot, M. Ben-Chen, F. Chazal, M. Ovsjanikov. SGP 2013] [N. Sharp, Y. Soliman, K. Crane. SIGGRAPH 2019]

Motivation (Scalar Fields)

[J. McCann, N. Pollard. SIGGRAPH 2008] [F. Prada, M. Kazhdan, M. Chuang, H. Hoppe. SIGGRAPH 2018]

Hierarchy \Rightarrow Efficiency

Motivation (Hierarchical Approach)

Hierarchical approach + vector field processing

Carry over existing scalar field processing techniques

Outline

Hierarchical Gradient Domain Vector Field Processing

- 1. Why are we interested in **vector field processing**?
- 2. How do we perform vector field processing in the gradient domain?
- 3. How do we design a **hierarchy** for vector field processing?
- 4. How do we make the hierarchical solver **converge** quickly?

5. Conclusion

• In gradient-domain processing, we solve for a scalar field ϕ (a.k.a. 0-form) on a triangle mesh \mathcal{M} by minimizing

$$\mathcal{E}(\phi) = \|\phi - \psi\|^2 + \alpha \|d\phi - \nu\|^2$$

where

- ψ : target field
- $\circ \nu$: target differential
- α : balancing weight

$$E(\phi) = \|\phi - \psi\|^2 + \alpha \|d\phi - \nu\|^2$$

Describes traditional smoothing / sharpening:

$$u = \lambda d\psi$$

10

[M. Chuang, S. Rusinkiewicz, M. Kazhdan. JCGT 2016]

$$\arg\min_{\phi} E(\phi) = \|\phi - \psi\|^2 + \alpha \|d\phi - \nu\|^2$$

 \Downarrow Discretize using a basis

$$Ax = b$$

A Fourier Perspective

[P. Bhat, B. Curless, M. Cohen, C. L. Zitnick. ECCV 2008]

In gradient-domain processing, we solve for a scalar field φ (a.k.a. 0-form) on a triangle mesh *M* by minimizing

$$E(\phi) = \|\phi - \psi\|^2 + \alpha \|d\phi - \nu\|^2$$

where

- ψ : target field
- $\circ \nu$: target differential
- $\circ \alpha$: balancing weight

If $\nu = d\eta$, η a 0-form

Then solving for ϕ is blending

- Low frequency components of ψ
- High frequency components of η

A Fourier Perspective

[P. Bhat, B. Curless, M. Cohen, C. L. Zitnick. ECCV 2008]

In gradient-domain processing, we solve for a scalar field φ (a.k.a. 0-form) on a triangle mesh *M* by minimizing

$$E(\phi) = \|\phi - \psi\|^2 + \alpha \|d\phi - \nu\|^2$$

where

- ψ : target field (lower frequency)
- $\circ \nu$: target differential (higher frequency)
- $\circ \alpha$: balancing weight

• In gradient-domain processing, we solve for a 1-form ω on a triangle mesh \mathcal{M} by minimizing

(lower frequency)

$$E(\omega) = \|\omega - \mu\|^2 + \alpha (\|d\omega - \varrho\|^2 + \|\delta\omega - \varphi\|^2)$$

(higher frequency – curl)

(higher frequency – divergence)

where

- \circ μ : target field
- $\circ \varrho$: target differential
- $\circ \varphi$: target co-differential
- $\circ \alpha$: balancing weight

$$E(\omega) = \|\omega - \mu\|^2 + \alpha(\|d\omega - \varrho\|^2 + \|\delta\omega - \varphi\|^2)$$

$$arrho=\lambda d\mu$$
, $arphi=\lambda\delta\mu$

[O. Stein, M. Wardetzky, A. Jacobson, E. Grinspun. SGP 2020]

$$\underset{\omega}{\arg\min E(\omega)} = \|\omega - \mu\|^2 + \alpha(\|d\omega - \varrho\|^2 + \|\delta\omega - \varphi\|^2)$$

 \Downarrow Discretize using a basis

$$Ax = b$$

A is Symmetric Positive Definite

Given the linear system Ax = b, we are interested in solving it **efficiently**.

Outline

Hierarchical Gradient Domain Vector Field Processing

- 1. Why are we interested in **vector field processing**?
- 2. How do we perform vector field processing in the gradient domain?
- 3. How do we design a **hierarchy** for vector field processing?
- 4. How do we make the hierarchical solver **converge** quickly?

5. Conclusion

Hierarchical Approach

Prolongation Matrix

- P = {P_{ij}} Describes the coarse basis vectors as linear combination of the finer ones
- Fine basis: $\{\phi_i\}$, then coarse basis $\{\hat{\phi}_i\}$ with

$$\hat{\phi}_i = \sum_m P_{mi}\phi_m$$

- Roles:
 - Restrict from fine to coarse
 - Define coarse system matrix
 - Prolong from coarse to fine

Which (fine) basis?

Which prolongation matrix?

<u>Our approach:</u> 1-form basis that is constructed from a 0-form basis, and that induces a 1-form prolongation matrix.

0-Form Basis (Ω^0 **)**

0-Form Prolongation Matrix

<u>Given</u>:

- Coarse and fine meshes
- A map from the fine to the coarse mesh

Goal:

- Pull back coarse basis functions to the fine mesh
- "Project" pulled back functions onto the fine basis

Existing Mesh Hierarchies

Self-intrinsic parameterization [H. T. D. Liu, J. E. Zhang, M. Ben-Chen, A. Jacobson. SIGGRAPH 2021]

Which (fine) basis?

$\Omega^0 \Rightarrow \Omega^1$

Harmonic-Free 1-Form

ins Hopkins

• Given 0-form basis functions $\{\phi_i\}$, the harmonic-free basis $\{\omega_i\}$ is defined as

 $\omega_i = d\phi_i + \delta \star \phi_i$

Whitney 1-Form

Given 0-form basis functions $\{\phi_i\}$, the Whitney 1-form basis $\{\phi_{ij}\}$ is defined as

Which prolongation matrix?

 $\mathbf{P}^0 \Rightarrow \mathbf{P}^1$

Harmonic-Free 1-Form

Given:

- Fine and coarse 0-form spaces: Ω^0 , $\widehat{\Omega}^0$ (defined by the 0-form prolongation \mathbf{P}^0)
- Harmonic-free 1-form space: $\Omega^1 \approx \Omega^0 \oplus \Omega^0$

Goal:

- We can also define a coarse 1-form space: $\widehat{\Omega}^1 \approx \widehat{\Omega}^0 \bigoplus \widehat{\Omega}^0$
- It induces a 1-form prolongation

 $\mathbf{P}^1 \approx \mathbf{P}^0 \bigoplus \mathbf{P}^0$

Whitney 1-Form

Given:

- Fine and coarse 0-form spaces: Ω^0 , $\widehat{\Omega}^0$ (defined by the 0-form prolongation \mathbf{P}^0)
- Whitney-free 1-form space: $\Omega^1 \approx \Omega^0 \wedge \Omega^0$

<u>Goal:</u>

- We can also define a coarse 1-form space: $\widehat{\Omega}^1 \approx \widehat{\Omega}^0 \wedge \widehat{\Omega}^0$
- It induces a 1-form prolongation

 $\mathbf{P}^1 \approx \mathbf{P}^0 \wedge \mathbf{P}^0$

Generalization

Observation:

- 1-form space constructions
 - Hamonic-free 1-form: $\Omega_1 \approx \Omega_0 \oplus \Omega_0$
 - Whitney 1-form: $\Omega_1 \approx \Omega_0 \wedge \Omega_0$
- Induced 1-form prolongations:
 - Harmonic-free 1-form: $P^1 \approx P^0 \oplus P^0$
 - Whitney 1-form: $\mathbf{P}^1 \approx \mathbf{P}^0 \wedge \mathbf{P}^0$

Generalization:

- $\mathcal{F}(V) = \bigoplus_i \bigotimes^{l_i} V, \mathcal{F}$ a functor on the category of vector spaces
- $\circ \mathcal{F}(\mathbf{P})$: an induced 1-form prolongation

<u>Goal:</u>

Leverage existing 0-form hierarchies

Observation:

Some existing 1-form spaces can be viewed as a multi-linear instances of a 0-form space

Show:

Multi-linearity allows extending the 0-form prolongation to a 1-form prolongation

We propose using this to design a general vector field processing hierarchy that can reuse existing 0-form hierarchies

Outline

Hierarchical Gradient Domain Vector Field Processing

- 1. Why are we interested in **vector field processing**?
- 2. How do we perform vector field processing in the gradient domain?
- 3. How do we design a **hierarchy** for vector field processing?
- 4. How do we make the hierarchical solver **converge** quickly?
- 5. Conclusion

Hierarchical Approach

Relaxation Scheme

Split Methods:

Decompose A into diagonal and triangular components: $A = L + D + L^{T}$ Iteratively update:

Damped Jacobi $\mathbf{N} = \frac{1}{2}\mathbf{D}$

Successive over-relaxation (SOR)

Exact Methods:

Conjugate gradient

$$\mathbf{x} \leftarrow \mathbf{N}^{-1}(\mathbf{b} - (\mathbf{A} - \mathbf{N})\mathbf{x})$$

 σ

 $\mathbf{N} = \mathbf{L} + \frac{1}{2}\mathbf{D}$
Hierarchical Approach

Smoothed Prolongation

• A typical step used in algebraic multigrid

 $\mathbf{P} \leftarrow \mathbf{SP}$

 $\mathbf{S} = \mathbf{I} - \mathbf{N}^{-1}\mathbf{A}$

where N is defined as

- A relaxation smoothing step as in [P. Vanek, J. Mandel, M. Brezina. Computing 1996]
- To maintain the same sparsity, we discard matrix coefficients that are originally zeros

Hierarchical Approach

Solution Update

Inspiration:

Krylov Subspace Method

Given:

- A: system matrix
- **b**: right hand side

<u>Goal</u>:

- Construct the Krylov subspace $K_n := \text{Span}\{\mathbf{b}, \mathbf{A}\mathbf{b}, \mathbf{A}^2\mathbf{b}, \cdots \mathbf{A}^{n-1}\mathbf{b}\}$
- Find $\mathbf{x} \in K_n$ that best solves $A\mathbf{x} = \mathbf{b}$

Krylov Subspace Update

Idea:

 We construct the Krylov subspace using the estimate at each V-Cycle iteration:

$$K_n = \operatorname{Span}\{\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_{n-1}\}\$$

• Find $\mathbf{x} \in K_n$ that best solves $A\mathbf{x} = \mathbf{b}$

Models

Convergence Study (0-Form System)

• An implicit scalar diffusion step ($\nu = 0$):

$$\arg\min_{\phi} E(\phi) = \|\phi - \psi\|^2 + \alpha \|d\phi\|^2$$

0-Form System Convergence

Convergence Study (1-Form System)

• An implicit vector diffusion step ($\rho = 0, \ \phi = 0$):

$$\underset{\omega}{\arg\min E(\omega)} = \|\omega - \mu\|^2 + \alpha(\|d\omega\|^2 + \|\delta\omega\|^2)$$

1-Form System Convergence

Convergence Comparison (0-Form/1-Form)

Iterations required to achieve errors $< 10^{-8}$ ($\alpha = 0.0001$):

Medele	Mesh Simplifi	cation	Self-Parameterization		
Models	Err at 50 its.	Its < $1 \cdot 10^{-8}$	Err at 50 its.	Its < $1 \cdot 10^{-8}$	
Plane	$1.00 \cdot 10^{-16}$ / $1.45 \cdot 10^{-16}$	2/9	$1.00 \cdot 10^{-16}$ / $1.43 \cdot 10^{-16}$	2/8	
Sphere	$1.00 \cdot 10^{-16}$ / $1.18 \cdot 10^{-14}$	2 / 11	$1.00 \cdot 10^{-16}$ / $2.93 \cdot 10^{-15}$	2 / 11	
Torus	$1.00 \cdot 10^{-16}$ / $1.66 \cdot 10^{-15}$	4/9	$1.00 \cdot 10^{-16}$ / $1.00 \cdot 10^{-16}$	3/6	
4-Torus	$1.00 \cdot 10^{-16}$ / $3.22 \cdot 10^{-13}$	4 / 20	$1.00 \cdot 10^{-16}$ / $1.00 \cdot 10^{-16}$	4/7	
Hand	$1.00 \cdot 10^{-16}$ / $3.42 \cdot 10^{-16}$	2 / 16	$1.00 \cdot 10^{-16}$ / $1.00 \cdot 10^{-16}$	2 / 11	
Bimba	$1.00 \cdot 10^{-16}$ / $6.45 \cdot 10^{-15}$	3 / 12	$1.00 \cdot 10^{-16}$ / $3.54 \cdot 10^{-16}$	2/7	
Rooster	$1.00 \cdot 10^{-16}$ / $1.21 \cdot 10^{-16}$	2/8	$1.00 \cdot 10^{-16}$ / $1.00 \cdot 10^{-16}$	2/6	
Fertility	$1.00 \cdot 10^{-16}$ / $7.69 \cdot 10^{-13}$	2 / 15	$1.00 \cdot 10^{-16} / 4.02 \cdot 10^{-14}$	2 / 12	

Convergence Comparison (0-Form/1-Form)

Iterations required to achieve errors $< 10^{-8}$ ($\alpha = 1$):

Models	Mesh Simplification			Self-Parameterization						
	Err at	50 its.]	Its < 1 · 10 [−]	8	Err at	50 its.	I	$ts < 1 \cdot 10^{-8}$	B
Plane	$1.00 \cdot 57^{-13}$	$1.56 \cdot 10^{-1}$		2 / >50		$1.56 \cdot 10^{-13}$	$/ 1.43 \cdot 10^{-1}$		2 / >50	
Sphere	$2.81 \cdot 10^{-16}$	$1.64 \cdot 10^{-1}$		2 / >50		$4.64 \cdot 10^{-16}$	/ 1.60 \cdot 10 ⁻¹		2 / >50	
Torus	$1.34 \cdot 10^{-15}$	$1.58 \cdot 10^{-1}$		6 / >50		$1.30 \cdot 10^{-15}$	/ 1.46 \cdot 10 ⁻¹		3 / >50	
4-Torus	$2.55 \cdot 10^{-16}$	$4.47 \cdot 10^{-1}$		5 / >50		$3.15 \cdot 10^{-16}$	/ $4.29 \cdot 10^{-1}$		3 / >50	
Hand	$1.00 \cdot 10^{-16}$	$1.15 \cdot 10^{-1}$		9 / >50		$1.00 \cdot 10^{-16}$	/ $1.09 \cdot 10^{-1}$		4 / >50	
Bimba	$1.96 \cdot 10^{-16}$	$1.31 \cdot 10^{-1}$		18 / >50		$5.03 \cdot 10^{-16}$	$1.07 \cdot 10^{-1}$		2 / >50	
Rooster	$5.24 \cdot 10^{-16}$	$4.18 \cdot 10^{-1}$		9 / >50		$3.67 \cdot 10^{-16}$	/ $4.14 \cdot 10^{-1}$		3 / >50	
Fertility	$1.00 \cdot 10^{-16}$	$6.19 \cdot 10^{-1}$		3 / >50		$1.75 \cdot 10^{-16}$	$/ 6.15 \cdot 10^{-1}$		2 / >50	

0-Form vs 1-Form

Update Update **Relaxation Scheme Comparison** SOR ($\sigma = 1.5$) has the fastest convergence Solve Relaxation Comparison (Sphere $\alpha = 0.0001$) Relaxation Comparison (Torus $\alpha = 0.0001$) Relaxation Comparison (Plane $\alpha = 0.0001$) Relaxation Comparison (4-Torus $\alpha = 0.0001$) 80 100 20 80 20 20 60 60 100 0 60 80 100 20 80 100 1.E+00 1.E-02 1.E-04 1.E-06 1.E-08 1.E-10 1.E-12 1.E-14 1.E-16 ۵ Relaxation Comparison (Hand $\alpha = 0.0001$) Relaxation Comparison (Bimba $\alpha = 0.0001$) Relaxation Comparison (Rooster $\alpha = 0.0001$) Relaxation Comparison (Fertility $\alpha = 0.0001$) Λ 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 1.E-01 1.E-03 1.E-05 1.E-07 1.E-09 1.E-11 1.E-13 1.E-15 OHNS HOPKINS Gauss-Seidel SOR (1.5) Conjugate Gradient Damped Jacobi (0.5) 50 Jacobi of ENGINEERING

Relaxation Scheme Comparison

Update

Resti

Update

Fastest Relaxation Convergence

Iterations required to achieve errors $< 10^{-8}$ ($\alpha = 0.0001$):

	Mesh Simplification		Self-Parameterization	
Models	Err at 50 its.	Its < $1 \cdot 10^{-8}$	Err at 50 its.	$\mathbf{Its} < 1 \cdot 10^{-8}$
Plane	$1.45 \cdot 10^{-16} \rightarrow 1.20 \cdot 10^{-16}$	9 → 6	$1.43 \cdot 10^{-16} = 2.22 \cdot 10^{-16}$	8 → 5
Sphere	$1.18 \cdot 10^{-14} \rightarrow 1.00 \cdot 10^{-16}$	11 → 8	$2.93 \cdot 10^{-15} = 1.00 \cdot 10^{-16}$	11 🗲 7
Torus	$1.66 \cdot 10^{-15} \rightarrow 1.00 \cdot 10^{-16}$	14 → 5	$1.00 \cdot 10^{-16} = 1.00 \cdot 10^{-16}$	6 → 4
4-Torus	$3.22 \cdot 10^{-13} > 1.00 \cdot 10^{-16}$	20 → 9	$1.00 \cdot 10^{-16} = 1.00 \cdot 10^{-16}$	7 → 4
Hand	$3.42 \cdot 10^{-16} \rightarrow 1.00 \cdot 10^{-16}$	16 → 6	$1.00 \cdot 10^{-16} = 1.00 \cdot 10^{-16}$	11 🗲 5
Bimba	$6.45 \cdot 10^{-15} \Rightarrow 1.65 \cdot 10^{-16}$	12 → 7	$3.54 \cdot 10^{-16} \cdot 1.67 \cdot 10^{-16}$	7 🗲 5
Rooster	$1.21 \cdot 10^{-16} \rightarrow 1.00 \cdot 10^{-16}$	8 → 4	$1.00 \cdot 10^{-16} = 1.00 \cdot 10^{-16}$	6 > 3
Fertility	7.69 \cdot 10 ⁻¹³ \rightarrow 3.13 \cdot 10 ⁻¹⁶	15 → 8	$4.02 \cdot 10^{-14} > 3.56 \cdot 10^{-16}$	12 > 8

Fastest Relaxation Convergence

Iterations required to achieve errors $< 10^{-8}$ ($\alpha = 1$):

	Mesh Simpl	ification	Self-Parameterization	
Models	Err at 50 its.	Its < $1 \cdot 10^{-8}$	Err at 50 its.	Its < $1 \cdot 10^{-8}$
Plane	$1.56 \cdot 10^{-1} \rightarrow 1.34 \cdot 10^{-1}$	>50 -> >50	$1.43 \cdot 10^{-1} \rightarrow 1.24 \cdot 10^{-1}$	>50 -> >50
Sphere	$1.64 \cdot 10^{-1} \Rightarrow 1.36 \cdot 10^{-1}$	>50 -> >50	$1.60 \cdot 10^{-1} \rightarrow 1.33 \cdot 10^{-1}$	>50 -> >50
Torus	$1.58 \cdot 10^{-1} \Rightarrow 1.37 \cdot 10^{-1}$	>50 -> >50	$1.46 \cdot 10^{-1} \Rightarrow 1.29 \cdot 10^{-1}$	>50 -> >50
4-Torus	$4.47 \cdot 10^{-1} \rightarrow 4.35 \cdot 10^{-1}$	>50 -> >50	$4.29 \cdot 10^{-1} \Rightarrow 4.17 \cdot 10^{-1}$	>50 -> >50
Hand	$1.15 \cdot 10^{-1} \rightarrow 7.29 \cdot 10^{-2}$	>50 -> >50	$1.09 \cdot 10^{-1} \rightarrow 6.68 \cdot 10^{-2}$	>50 -> >50
Bimba	$1.31 \cdot 10^{-1} \Rightarrow 1.03 \cdot 10^{-1}$	>50 -> >50	$1.07 \cdot 10^{-1} \Rightarrow 8.78 \cdot 10^{-2}$	>50 -> >50
Rooster	$4.18 \cdot 10^{-1} \Rightarrow 4.00 \cdot 10^{-1}$	>50 -> >50	$4.14 \cdot 10^{-1} \Rightarrow 3.98 \cdot 10^{-1}$	>50 -> >50
Fertility	$6.19 \cdot 10^{-1} \Rightarrow 6.06 \cdot 10^{-1}$	>50 -> >50	$6.15 \cdot 10^{-1} \rightarrow 6.03 \cdot 10^{-1}$	>50 -> >50

Smoothed Prolongation Convergence

Iterations required to achieve errors $< 10^{-8}$ ($\alpha = 0.0001$):

Medele	Mesh Simplification		Self-Parameterization	
models	Err at 50 its.	Its < $1 \cdot 10^{-8}$	Err at 50 its.	Its < $1 \cdot 10^{-8}$
Plane	$1.45 \cdot 10^{-16} \rightarrow 1.90 \cdot 10^{-16}$	9 → 7	$1.43 \cdot 10^{-16} \rightarrow 1.00 \cdot 10^{-16}$	8 → 6
Sphere	$1.18 \cdot 10^{-14} \rightarrow 1.00 \cdot 10^{-16}$	11 → 7	$2.93 \cdot 10^{-15} \rightarrow 1.00 \cdot 10^{-16}$	11 → 7
Torus	$1.66 \cdot 10^{-15} \rightarrow 1.14 \cdot 10^{-16}$	14 → 7	$1.00 \cdot 10^{-16} \rightarrow 1.00 \cdot 10^{-16}$	6 → 5
4-Torus	$3.22 \cdot 10^{-13} \rightarrow 2.92 \cdot 10^{-16}$	20 🗲 15	$1.00 \cdot 10^{-16} \rightarrow 1.00 \cdot 10^{-16}$	7 → 6
Hand	$3.42 \cdot 10^{-16} \rightarrow 1.00 \cdot 10^{-16}$	16 → 15	$1.00 \cdot 10^{-16} \rightarrow 1.00 \cdot 10^{-16}$	11 → 7
Bimba	$6.45 \cdot 10^{-15} \Rightarrow 5.4 \cdot 10^{-16}$	12 → 9	$3.54 \cdot 10^{-16} \Rightarrow 9.18 \cdot 10^{-16}$	7 → 5
Rooster	$1.21 \cdot 10^{-16} \rightarrow 1.46 \cdot 10^{-16}$	8 → 7	$1.00 \cdot 10^{-16} \rightarrow 1.21 \cdot 10^{-16}$	6 → 5
Fertility	$7.69 \cdot 10^{-13} \Rightarrow 3.61 \cdot 10^{-11}$	15 → 15	$4.02 \cdot 10^{-14} \rightarrow 1.99 \cdot 10^{-13}$	12 → 14

Smoothed Prolongation Convergence

Iterations required to achieve errors $< 10^{-8}$ ($\alpha = 1$):

	Mesh Simp	lification	Self-Parameterization	
Models	Err at 50 its.	Its < $1 \cdot 10^{-8}$	Err at 50 its.	Its < $1 \cdot 10^{-8}$
Plane	$1.56 \cdot 10^{-1} \rightarrow 1.35 \cdot 10^{-1}$	>50 -> >50	$1.43 \cdot 10^{-1} \rightarrow 1.25 \cdot 10^{-1}$	>50 -> >50
Sphere	$1.64 \cdot 10^{-1} \Rightarrow 1.24 \cdot 10^{-1}$	>50 -> >50	$1.60 \cdot 10^{-1} \Rightarrow 1.19 \cdot 10^{-1}$	>50 -> >50
Torus	$1.58 \cdot 10^{-1} \Rightarrow 1.39 \cdot 10^{-1}$	>50 -> >50	$1.46 \cdot 10^{-1} \Rightarrow 1.21 \cdot 10^{-1}$	>50 ->50
4-Torus	$4.47 \cdot 10^{-1} \rightarrow 4.41 \cdot 10^{-1}$	>50 -> >50	$4.29 \cdot 10^{-1} \Rightarrow 4.18 \cdot 10^{-1}$	>50 -> >50
Hand	$1.15 \cdot 10^{-1} \rightarrow 8.56 \cdot 10^{-2}$	>50 -> >50	$1.09 \cdot 10^{-1} \rightarrow 7.08 \cdot 10^{-2}$	>50 -> >50
Bimba	$1.31 \cdot 10^{-1} \rightarrow 1.09 \cdot 10^{-1}$	>50 -> >50	$1.07 \cdot 10^{-1} \rightarrow 7.84 \cdot 10^{-2}$	>50 -> >50
Rooster	$4.18 \cdot 10^{-1} \Rightarrow 4.13 \cdot 10^{-1}$	>50 -> >50	$4.14 \cdot 10^{-1} \Rightarrow 3.98 \cdot 10^{-1}$	>50 ->50
Fertility	$6.19 \cdot 10^{-1} \rightarrow 6.13 \cdot 10^{-1}$	>50 -> >50	$6.15 \cdot 10^{-1} \rightarrow 6.05 \cdot 10^{-1}$	>50 -> >50

Smoothed Prolongation Convergence Energy (a=0.0001)

Krylov Subspace Update Convergence

Iterations required to achieve errors $< 10^{-8}$ ($\alpha = 0.0001$):

Medele	Mesh Simplifica	ation	Self-Parameterization	
Models	Err at 50 its.	Its < $1 \cdot 10^{-8}$	Err at 50 its.	Its < $1 \cdot 10^{-8}$
Plane	$1.45 \cdot 10^{-16} \rightarrow 1.20 \cdot 10^{-16}$	9 → 5	$1.43 \cdot 10^{-16} \Rightarrow 2.22 \cdot 10^{-16}$	8 → 5
Sphere	$1.18 \cdot 10^{-14} \rightarrow 1.00 \cdot 10^{-16}$	11 → 6	$2.93 \cdot 10^{-15} \Rightarrow 1.00 \cdot 10^{-16}$	11 → 6
Torus	$1.66 \cdot 10^{-15} \Rightarrow 1.00 \cdot 10^{-16}$	14 → 5	$1.00 \cdot 10^{-16} \Rightarrow 1.00 \cdot 10^{-16}$	6 → 4
4-Torus	$3.22 \cdot 10^{-13} \rightarrow 1.00 \cdot 10^{-16}$	20 → 8	$1.00 \cdot 10^{-16} \Rightarrow 1.00 \cdot 10^{-16}$	7 → 5
Hand	$3.42 \cdot 10^{-16} \rightarrow 1.00 \cdot 10^{-16}$	16 → 10	$1.00 \cdot 10^{-16} \Rightarrow 1.00 \cdot 10^{-16}$	11 → 5
Bimba	$6.45 \cdot 10^{-15} \Rightarrow 1.65 \cdot 10^{-16}$	12 → 6	$3.54 \cdot 10^{-16} \Rightarrow 1.67 \cdot 10^{-16}$	7 → 4
Rooster	$1.21 \cdot 10^{-16} \rightarrow 1.00 \cdot 10^{-16}$	8 → 5	$1.00 \cdot 10^{-16} \Rightarrow 1.00 \cdot 10^{-16}$	6 → 4
Fertility	$7.69 \cdot 10^{-13} ightarrow 3.13 \cdot 10^{-16}$	15 → 7	$4.02 \cdot 10^{-14} \Rightarrow 3.56 \cdot 10^{-16}$	12 → 6

Krylov Subspace Update Convergence

Iterations required to achieve errors $< 10^{-8}$ ($\alpha = 1$):

	Mesh Simplification		Self-Parameterization	
Models	Err at 50 its.	Its < $1 \cdot 10^{-8}$	Err at 50 its.	Its < $1 \cdot 10^{-8}$
Plane	$1.56 \cdot 10^{-1} \rightarrow 1.34 \cdot 10^{-1}$	>50 -> >50	$1.43 \cdot 10^{-1} \rightarrow 1.24 \cdot 10^{-1}$	>50 -> >50
Sphere	$1.64 \cdot 10^{-1} \Rightarrow 1.36 \cdot 10^{-1}$	>50 -> >50	$1.60 \cdot 10^{-1} \Rightarrow 1.33 \cdot 10^{-1}$	>50 -> >50
Torus	$1.58 \cdot 10^{-1} \Rightarrow 1.37 \cdot 10^{-1}$	>50 -> >50	$1.46 \cdot 10^{-1} \Rightarrow 1.29 \cdot 10^{-1}$	>50 -> >50
4-Torus	$4.47 \cdot 10^{-1} \rightarrow 4.35 \cdot 10^{-1}$	>50 -> >50	$4.29 \cdot 10^{-1} \Rightarrow 4.17 \cdot 10^{-1}$	>50 -> >50
Hand	$1.15 \cdot 10^{-1} \rightarrow 7.29 \cdot 10^{-2}$	>50 -> >50	$1.09 \cdot 10^{-1} \rightarrow 6.68 \cdot 10^{-2}$	>50 -> >50
Bimba	$1.31 \cdot 10^{-1} \Rightarrow 1.03 \cdot 10^{-1}$	>50 -> >50	$1.07 \cdot 10^{-1} \Rightarrow 8.78 \cdot 10^{-2}$	>50 -> >50
Rooster	$4.18 \cdot 10^{-1} \Rightarrow 4.00 \cdot 10^{-1}$	>50 -> >50	$4.14 \cdot 10^{-1} \Rightarrow 3.98 \cdot 10^{-1}$	>50 -> >50
Fertility	$6.19 \cdot 10^{-1} \Rightarrow 6.06 \cdot 10^{-1}$	>50 -> >50	$6.15 \cdot 10^{-1} \rightarrow 6.03 \cdot 10^{-1}$	>50 -> >50

SOR + Krylov Subspace Update

Iterations required to achieve errors $< 10^{-8}$ ($\alpha = 0.0001$):

	Mesh Simplific	ation	Self-Parameterization	
Models	Err at 50 its.	Its < $1 \cdot 10^{-8}$	Err at 50 its.	Its < $1 \cdot 10^{-8}$
Plane	$1.45 \cdot 10^{-16} \rightarrow 1.42 \cdot 10^{-15}$	9 → 4	$1.43 \cdot 10^{-16} \Rightarrow 2.2 \cdot 10^{-16}$	8 → 4
Sphere	$1.18 \cdot 10^{-14} \rightarrow 1.43 \cdot 10^{-16}$	11 → 5	$2.93 \cdot 10^{-15} \Rightarrow 6.2 \cdot 10^{-16}$	11 → 5
Torus	$1.66 \cdot 10^{-15} \Rightarrow 3.85 \cdot 10^{-16}$	14 → 4	$1.00 \cdot 10^{-16} \Rightarrow 9.51 \cdot 10^{-16}$	6 → 3
4-Torus	$3.22 \cdot 10^{-13} \rightarrow 9.12 \cdot 10^{-16}$	20 → 5	$1.00 \cdot 10^{-16} \Rightarrow 5.36 \cdot 10^{-16}$	7 → 4
Hand	$3.42 \cdot 10^{-16} \rightarrow 3.06 \cdot 10^{-16}$	16 → 3	$1.00 \cdot 10^{-16} \Rightarrow 1.00 \cdot 10^{-16}$	11 → 3
Bimba	$6.45 \cdot 10^{-15} \rightarrow 1.06 \cdot 10^{-15}$	12 → 5	$3.54 \cdot 10^{-16} \rightarrow 7.9 \cdot 10^{-16}$	7 → 4
Rooster	$1.21 \cdot 10^{-16} \rightarrow 1.72 \cdot 10^{-16}$	8 → 3	$1.00 \cdot 10^{-16} \Rightarrow 1.00 \cdot 10^{-16}$	6 → 3
Fertility	$7.69 \cdot 10^{-13} \Rightarrow 3.75 \cdot 10^{-16}$	15 → 5	$4.02 \cdot 10^{-14} \Rightarrow 2.94 \cdot 10^{-16}$	12 → 5

SOR + Krylov Subspace Update

Iterations required to achieve errors $< 10^{-8}$ ($\alpha = 1$):

Models	Mesh Simp	lification	Self-Parameterization	
	Err at 50 its.	Its < $1 \cdot 10^{-8}$	Err at 50 its.	Its < $1 \cdot 10^{-8}$
Plane	$1.56 \cdot 10^{-1} \rightarrow 2.86 \cdot 10^{-4}$	>50 -> >50	$1.43 \cdot 10^{-1} \rightarrow 2.39 \cdot 10^{-4}$	>50 -> >50
Sphere	$1.64 \cdot 10^{-1} \rightarrow 1.24 \cdot 10^{-6}$	>50 -> >50	$1.60 \cdot 10^{-1} \rightarrow 2.45 \cdot 10^{-6}$	>50 ->50
Torus	$1.58 \cdot 10^{-1} \rightarrow 1.77 \cdot 10^{-2}$	>50 -> >50	$1.46 \cdot 10^{-1} \rightarrow 1.30 \cdot 10^{-2}$	>50 -> >50
4-Torus	$4.47 \cdot 10^{-1} \rightarrow 5.20 \cdot 10^{-2}$	>50 -> >50	$4.29 \cdot 10^{-1} \rightarrow 7.03 \cdot 10^{-3}$	>50 -> >50
Hand	$1.15 \cdot 10^{-1} \rightarrow 5.65 \cdot 10^{-7}$	>50 -> >50	$1.09 \cdot 10^{-1} \rightarrow 2.90 \cdot 10^{-7}$	>50 ->50
Bimba	$1.31 \cdot 10^{-1} \Rightarrow 3.32 \cdot 10^{-4}$	>50 -> >50	$1.07 \cdot 10^{-1} \rightarrow 1.03 \cdot 10^{-4}$	>50 -> >50
Rooster	$4.18 \cdot 10^{-1} \rightarrow 1.43 \cdot 10^{-3}$	>50 -> >50	$4.14 \cdot 10^{-1}$ → $7.73 \cdot 10^{-4}$	>50 -> >50
Fertility	$6.19 \cdot 10^{-1} \rightarrow 1.40 \cdot 10^{-1}$	>50 -> >50	$6.15 \cdot 10^{-1} \rightarrow 1.19 \cdot 10^{-1}$	>50 -> >50

0-Form vs 1-Form (SOR + Krylov)

All

Iterations required to achieve errors $< 10^{-8}$ ($\alpha = 0.0001$):

Madala	Mesh Simplific	ation	Self-Parameterization	
Models	Err at 50 its.	Its < $1 \cdot 10^{-8}$	Err at 50 its.	Its < $1 \cdot 10^{-8}$
Plane	$1.45 \cdot 10^{-16} \rightarrow 1.04 \cdot 10^{-15}$	9 → 4	$1.43 \cdot 10^{-16} \Rightarrow 3.11 \cdot 10^{-16}$	8 → 3
Sphere	$1.18 \cdot 10^{-14} \rightarrow 4.51 \cdot 10^{-16}$	11 → 4	$2.93 \cdot 10^{-15} \Rightarrow 2.19 \cdot 10^{-16}$	11 → 4
Torus	$1.66 \cdot 10^{-15} \Rightarrow 3.98 \cdot 10^{-16}$	14 → 4	$1.00 \cdot 10^{-16} \Rightarrow 1.40 \cdot 10^{-16}$	6 → 3
4-Torus	$3.22 \cdot 10^{-13} \rightarrow 4.80 \cdot 10^{-16}$	20 → 5	$1.00 \cdot 10^{-16} \Rightarrow 5.67 \cdot 10^{-16}$	7 → 4
Hand	$3.42 \cdot 10^{-16} \rightarrow 1.07 \cdot 10^{-16}$	16 → 3	$1.00 \cdot 10^{-16} \Rightarrow 1.00 \cdot 10^{-16}$	11 → 3
Bimba	$6.45 \cdot 10^{-15} \rightarrow 7.47 \cdot 10^{-16}$	12 → 4	$3.54 \cdot 10^{-16} \Rightarrow 2.88 \cdot 10^{-16}$	7 → 4
Rooster	$1.21 \cdot 10^{-16} \Rightarrow 3.73 \cdot 10^{-16}$	8 → 3	$1.00 \cdot 10^{-16} \Rightarrow 2.99 \cdot 10^{-16}$	6 → 3
Fertility	$7.69 \cdot 10^{-13}$ → $1.00 \cdot 10^{-16}$	15 → 5	$4.02 \cdot 10^{-14} \rightarrow 4.16 \cdot 10^{-16}$	12 → 5

Iterations required to achieve errors $< 10^{-8}$ ($\alpha = 1$):

	Mesh Simpl	ification	Self-Parameterization	
Models	Err at 50 its.	Its < $1 \cdot 10^{-8}$	Err at 50 its.	Its < $1 \cdot 10^{-8}$
Plane	$1.56 \cdot 10^{-1} \rightarrow 3.61 \cdot 10^{-5}$	>50 -> >50	$1.43 \cdot 10^{-1} \rightarrow 2.40 \cdot 10^{-5}$	>50 -> >50
Sphere	$1.64 \cdot 10^{-1} \rightarrow 5.60 \cdot 10^{-8}$	>50 -> >49	$1.60 \cdot 10^{-1} \rightarrow 5.77 \cdot 10^{-8}$	>50 🗲 49
Torus	$1.58 \cdot 10^{-1} \rightarrow 7.51 \cdot 10^{-3}$	>50 -> >50	$1.46 \cdot 10^{-1} \rightarrow 4.18 \cdot 10^{-3}$	>50 -> >50
4-Torus	$4.47 \cdot 10^{-1} \rightarrow 2.35 \cdot 10^{-2}$	>50 -> >50	$4.29 \cdot 10^{-1} \rightarrow 8.89 \cdot 10^{-3}$	>50 -> >50
Hand	$1.15 \cdot 10^{-1} \rightarrow 4.40 \cdot 10^{-8}$	>50 ->49	$1.09 \cdot 10^{-1} \rightarrow 2.93 \cdot 10^{-8}$	>50 -> >47
Bimba	$1.31 \cdot 10^{-1} \Rightarrow 3.14 \cdot 10^{-5}$	>50 -> >50	$1.07 \cdot 10^{-1} \rightarrow 9.59 \cdot 10^{-6}$	>50 -> >50
Rooster	$4.18 \cdot 10^{-1}$ → $1.00 \cdot 10^{-3}$	>50 -> >50	$4.14 \cdot 10^{-1} ightarrow 1.65 \cdot 10^{-4}$	>50 -> >50
Fertility	$6.19 \cdot 10^{-1} \rightarrow 1.02 \cdot 10^{-1}$	>50 -> >50	$6.15 \cdot 10^{-1} \rightarrow 6.78 \cdot 10^{-2}$	>50 -> >50

0-Form vs 1-Form (All)

Multigrid – Prolongation Matrix

- Ideal multigrid:
 - Relaxation solves high-frequency
 - Coarse level solves low-frequency
- Ideal prolongation Matrix:
 - Coarse functions should be low-frequency

Analyzing Prolongation Matrices

<u>Idea:</u>

 Check that functions that "appear" low-frequency in the coarse space are lowfrequency in the fine space

Implementation:

- Solve (Laplacian) eigenvalue problem at each level
- Project the coarse eigenfunctions $\{\hat{\mathbf{e}}_i\}$ onto the finest eigenfunctions $\{\mathbf{e}_j\}$:

$$C_{ij} = \langle \hat{\mathbf{e}}_i, \mathbf{e}_j \rangle$$

Expectation:

• For smaller values of (*i*, *j*), the matrix *C* should look diagonal

Mesh Simplification C (Fertility)

Self-Parameterization C (Fertility)

Outline

Hierarchical Gradient Domain Vector Field Processing

- 1. Why are we interested in **vector field processing**?
- 2. How do we perform vector field processing in the gradient domain?
- 3. How do we design a **hierarchy** for vector field processing?
- 4. How do we make the hierarchical solver **efficient**?

5. Conclusion

Conclusion

- 1. Why are we interested in (hierarchical) **vector field processing**?
- This thesis is the first to look into a hierarchical approach for vector field processing
 Wide range applications
 - Real-time performance
- Applicable to improve the performance of the earlier work finding shape correspondences, where optical flow is used [S. C. Lee, M. Kazhdan. SGP 2019]

Conclusion

- 2. How do we perform vector field processing in the gradient domain?
- Formulate as a gradient domain problem using exterior derivatives
- Discretize using a basis, resulting in solving a linear system

Ax = b

 We propose to use any 1-form basis that is constructed from a 0-form basis for the discretization

- 3. How do we design a **hierarchy** for vector field processing?
- We show that the multi-linear formulation allows us to naturally extend the 0-form prolongation to a 1-form prolongation
 - "Naturally" \Rightarrow commutes with differentiation
- We propose to use this 1-form prolongation for the multigrid method
- Our generalization can be applied to other 0-form-based-constructed hierarchy, such as the 2-form hierarchy in our work (just accepted today) [M. Kohlbrenner, S. C. Lee, M. Kazhdan, M. Alexa. SGP 2023].

4. How do we make the hierarchical solver **converge** quickly?

Challenge:

Slow convergence

Solutions:

- Successive over-relaxation
- Prolongation smoothing
- Krylov subspace update

Future Work

Remaining Challenges:

- Slow convergence for big α
- Coarse basis functions do not "focus" on the low-frequency

Possible Directions:

- Pre-conditioning
- Hierarchy (mesh simplification) customized for 1-form prolongation
- Modified 0-form prolongation matrix

Acknowledgement

Special thanks to

- Nassir and all the previous collaborators for the interesting work on
 [S. C. Lee, B. Fuerst, J. Fotouhi, M. Fischer, G. Osgood, N. Navab, IJCAI 2016]
 [M. Fischer, B. Fuerst, S. C. Lee, J. Fotouhi, S. Habert, S. Weidert, E. Euler, G. Osgood, N. Navab, IJCAR 2016]
 [S. C. Lee, K. Tateno, B. Fuerst, F. Tombari, J. Fotohuhi, G. Osgood, A. Johnson, N. Navab, ISMAR-Adjunct 2017]
 [S. C. Lee, B. Fuerst, K. Tateno, A. Johnson, J. Fotouhi, G. Osgood, F. Tombari, N. Navab, MICCAI-AECAI 2017]
 [Z Wang, S. C. Lee, F. Zhong, D. Navarro-Alarcon, Y. Liu, A. Deguet, P. Kazanzides, R. H. Taylor, IEEE RAL 2017]
 [J. Hajek, M. Unberath, J. Fotouhi, B. Bier, S. C. Lee, G. Gosgood, A. Maier, M. Armand, N. Navab. MICCAI 2018]
 [M. Unberath, . Zaech, S. C. Lee, B. Bier, J. Jotouhi, M. Armand, N. Navab. MICCAI 2018]
 [L. Fink, S. C. Lee, J. Y. Wu, X. Liu, T. Song, Y. Velikova, M. Stamminger, N. Navab, M. Unberath. MICCAI 2019]
 [S. C. Lee, M. Seibold, P. Furnstahl M. Farshad, N. Navab. SPIE 2020]
 [M. Haiderbhai, S. Ledesma, S. C. Lee, M. Seibold, P. Furnstahl, N. Navab, P. Fallavollita. IJCAR 2020]
- Misha for his unlimited supports and passion in teaching me all the background I need for geometry processing research, as well as inspiring me the way of teaching
- All my formal and current lab-mates and friends for the constructive advice and help

4

JOHNS HOPKINS WHITING SCHOOL of ENGINEERING

© The Johns Hopkins University 2023, All Rights Reserved.