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IMAGE DEBLURRING

Image Upsampling via Tight Frames

by LEE Sing Chun

In this thesis a new parameter-free algorithm for automatically upsampling images is

proposed which is efficient to preserve natural detail and reduce Moire artifacts of in-

put images. Multi-resolution analysis via Tight Frames is utilized in the algorithm to

spontaneously correct the high frequency band data that correspond to the natural de-

tail. The algorithm extends the image inpainting model of [1] and interprets the input

image as the known data in the transformed domain. In addition, the thresholding in

[1] is abandoned, yet results of the algorithm are not dominated by noise because of a

good initial guess. On the contrary, they demonstrate the production of better visual

perception images of this algorithm. On top of this, the algorithm becomes parameter-

free because thresholding is not involved. It makes the algorithm more user-friendly

that users need not to adjust any parameters. Image upsampling is done completely

automatically. Finally, video upsampling is also performed by applying this algorithm

frames by frames and compare with those from [2].
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Chapter 1

Introduction

Reconstructing a high resolution image from a low resolution image, namely image up-

sampling, is a fundamental image operation that is nearly found in all image editing

software. Recently, new high resolution display devices also introduce upsampling tech-

nique to adapt input images or footage for their high resolution output. To upsample

an image, more unknown pixels have to be determined under additional assumptions on

the desired high resolution image. It is a remarkably challenging problem and has been

being studied for many years.

Varied upsampling algorithm assume different image characteristic. For instance, poly-

nomial interpolation upsampling like bicubic upsampling presumes the image is smooth

enough so that the image can be well-approximated by polynomials as in [3] and [4].

Example-based upsampling suggests the texture or detail content of the image is closely

matched with the example images in the database such as [5], [6], [7] and [8]. These

assumptions are considerably inappropriate in some cases. The upsampled image either

is too blurry which is even worse than results of polynomial interpolation, or lose its

original nature which results an artificially composite image. Moreover, an automatic

segmentation is definitely required to clip the texture or detail content out of the image.

A good segmentation algorithm that is suitable for all images is hardly found. Tight

Frame is thereby introduced to perform upsampling in this thesis so as to preserve

natural details of the upsampled image such as [9].

In this thesis, multi-resolution analysis via Tight Frames and iterative method are uti-

lized. Through this analysis, the image domain is decomposed by a series of filter bands

to form one set of nested disjointed intervals at which each interval represent an image

domain with certain frequencies as well as a band-limited image domain. The input

image is considered to be known datum of a low resolution image. This low resolution

image and the desired high resolution image are in two different set of intervals from the

analysis; therefore, the input and output images can be related by this analysis. On top

of this, based on the perfect reconstruction identity of this analysis and its corresponding

1



Chapter 1. Introduction 2

synthesis, an iterative algorithm for image upsampling is developed. The algorithm is

briefly described in the following (figure 1.1). More details will be discussed later.
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Figure 1.1: Schematic diagram of the proposed algorithm:

In addition, the input image of the algorithm is assumed to be obtained by any photo-

graphic devices and without any digital adaption. A gray-scale image is always taken

as the input of the algorithm. However, for real-world images, mostly they are of RGB

scale. To adapt to the algorithm, the RGB scale is converted to YUV colour space

and then the Y channel is upsampled by the algorithm while the U and V channels

are upsampled by bicubic interpolation. Similar to [2], the algorithm for colour im-

ages upsampling concentrates on the human perception rather than image chrominance.

Besides, all the images mentioned in this thesis are assumed to be stacked column by

column as a column vector.

This thesis is organized as follows. A brief review of related literature is provided in

chapter 2. In chapter 3, there are three sections. First section is about multi-resolution

analysis via Tight Frames. Detail of proposed algorithm is described in the following

section. The last section gives the mathematical analysis of the algorithm. In chapter

4, the results of the algorithm is presented and compared with those from [2]. Finally,

discussion, summary and future research direction are described in chapter 5.



Chapter 2

Related Work

In the past few decades, scientists who has been researching in computer graphics or

image processing has been paying more and more attention on image upsampling. Ac-

cordingly, many upsampling algorithms have been suggested with their own distinctive

ideas, prior assumptions and additional information of images. The image formation

model given by [10] provides a typical approach to model image upsampling. In this

model several low resolution images are obtained to reproduce a high resolution image.

Similar to others, our algorithm is also based on this model; however, it is modified to

accept only one low resolution image as the input and then reproduce the high resolution

image. That is also called single-image upsampling.

The traditional single-image upsampling is by polynomial interpolations such as bilinear,

bicubic and [3]. The interpolation upsampling is simple to implement and always efficient

in the sense of the running speed; therefore, it is widely used by commercial image/video

processing software. However, this upsampling technique always gives inappropriate

resulting images because of its assumption of images that presumes images are spatially

smooth or band-limited. For real world images, they always contain sharp edges as well

as high frequency textures. As a result, this smoothness assumption certainly makes

the upsampled version of real world images become blurring, blocking or aliasing. This

artifacts and details of interpolation upsampling can be referred to [4].

Another main approach of single-image upsampling is by example-based or patch-based

non-parametric image models. This model was first proposed by [11] [12], also known as

the ”Image Analogies” framework, and then was further developed by [5]. The model

assumes the high frequency bands (that is sharp edges and textures) of the desired

high resolution image can be predicted by some example patches in a learning-database.

These example patches are split into low frequency bands and high frequency bands,

and only the low frequency bands of them are stored in the database. For any input

image, one can match it with the low frequency bands in the database so as to find

out the corresponding high frequency bands. The missing high frequency bands of

3



Chapter 2. Related Work 4

the input image are thereby predicted like this, and these predicted bands are used to

upsample the image. This approach is really able to produce an upsampled image with

reasonable sharp edges and textures; however, if there are no relevant patch information

in the database, it seems impossible to upsample the image correctly. In this case, the

upsampled image is fairly unpredictable and may even worse than the input. Besides

this, another drawback of this approach is the relatively high computation time. Since

the most optimal example patch among all in the database has to be found for every

segment of textures, it is remarkably time expensive. Similar approaches with different

refinements can be found in [6], [7] and [8].

Recently, natural image statistics stimulate researchers’ minds to design image upsam-

pling algorithm. Different statistic distribution of natural images are considered to be

utilized in image upsampling as prior information of the high resolution image. For ex-

ample, [13] and [14] use analytical Markov field models and employ the statistical edge

information in constraining the image upsampling problem. This approach is success to

reproduce the sharp edges of the image but it still fails to preserve small-scaled texture

of the image. However, it is still a newly attempted approach and certainly has lots

of room to improve and more interesting is this approach is somehow in between the

typical approach and the database approach. It has the prior information like what the

database approach has and also has the advantage of fast implementation as the typical

approach does. Besides, [2] also utilizes the natural image gradient distribution in its

total variational approach algorithm to solve the minimization problem. Our proposed

algorithm in this thesis has not used the natural image statistics so far; nevertheless,

it is reasonably an important future research direction that how to constrain the high

frequency bands in our algorithm by the natural image statistics.



Chapter 3

Proposed Algorithm

In this chapter, some preliminaries of tight frames and multi-resolution analysis are pre-

sented. For simplicity, we only consider the one dimensional cases. The two dimensional

cases can be constructed by tensor product of those in one dimensional cases. One can

see more details in [15], [16] and [17]. Furthermore, the thigh frame image upsampling

algorithm is also proposed in this chapter with mathematical analysis.

3.1 Tight Frames

A system X ⊆ L2(R) is called a tight frames of L2(R) if

f =
∑
g∈X
〈f, g〉 g, ∀f ∈ L2(R).

Define XΨ as the collection of all dilations and translations of a finite set Ψ ∈ L2(R) by

XΨ :=
{

2k/2ψ(2kx− j) | ψ ∈ Ψ; k, j ∈ Z
}
.

If XΨ is a tight frames with compact support, then one can construct it by starting with

a compactly supported refinable function φ ∈  L2(R), also known as scaling function, by

satisfying the dilation equation:

φ(x) =

l2∑
n=−l1

√
2hφ(n)φ(2x− n) ∀x ∈ R, (3.1)

where hφ(n) is the coefficients of a low-pass filter with length (l2 − l1). It is equivalent

to satisfy the refinement equation:

φ̂(2ω) = Hφ(ω)φ̂(ω) ∀ω ∈ R,

5



Chapter 3. Proposed Algorithm 6

where φ̂ is the Fourier transform of φ and Hφ(ω) is the discrete Fourier transform of
√

2hφ(n) with Hφ(0) = 1.

After finding the refinable function φ, one can construct the tight frames system by

satisfying the similar dilation equation:

ψ(x) =

s2∑
n=−s1

√
2hψ(n)φ(2x− n) ∀x ∈ R, (3.2)

where hψ(n) is the coefficients of a high-pass filter with length (s2 − s1). It is also

equivalent to satisfy the following equation in Fourier domain:

ψ̂(2ω) = Hψ(ω)φ̂(ω) ∀ω ∈ R,

where ψ̂ is the Fourier transform of ψ and Hψ(ω) is the discrete Fourier transform of
√

2hψ(n).

From [18], the unitary extension principle (UEP) implies that XΨ which is generated by

a finite set Ψ forms a tight frame of L2(R) if Hφ(ω) and {Hψ(ω)}ψ∈Ψ satisfy:

Hφ(ω)Hφ(ω + kπ) +
∑
ψ∈Ψ

Hψ(ω)Hψ(ω + kπ) = δk,0, k = 0, 1 (3.3)

for almost all ω ∈ R.

As a result, one can construct the tight frame system by finding L2(R) if Hφ(ω) and

{Hψ(ω)}ψ∈Ψ such that they satisfy (3.3). In this thesis, the tight frame used is con-

structed by piecewise linear B-spline with low-pass filter coefficients h0 = 1
4 [1, 2, 1] and

high pass filter coefficients h1 =
√

2
4 [1, 0,−1] and h2 = 1

4 [−1, 2,−1]. The corresponding

scaling function φ and wavelet functions ψ1 and ψ2 are shown in Figure (3.1).

Figure 3.1: Scaling and wavelet functions

The two dimensional tight frame system used in the proposing algorithm is thus given

by the tensor product of h0, h1 and h2, i.e. hs,t = tensor product of (ht, hs) where

s = 0, 1, 2 and t = 0, 1, 2.
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In this thesis, the convolution of filters will be represented by matrix equations with

their corresponding filter matrices. Furthermore, periodic boundary will be used here.

For example, the filter matrix H0 corresponds to the filter h0 and H0,0 associated to h0,0

are:

H0 =
1

4



2 1 0 · · · 0 1

1 2 1
. . . 0 0

0 1 2
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0
. . . 2 1

1 0 0 · · · 1 2


and H0,0 = HT

0 ⊗H0.

and we have the following perfect reconstruction identity:

2∑
s,t=0

HT
s,tHs,t = identity matrix (3.4)

3.2 Multi-Resolution Analysis

According to [16] and [17], the tight frame system mentioned above forms a multi-

resolution analysis (MRA). First, consider the collection of all translations of the scaling

function φ ∈ L2(R) with dilation k ∈ Z.

Φk :=
{

2k/2φ(2kx− j) | j ∈ Z
}
.

Let Vk := closL2(R)Φk. Since every φk ∈ Vk also satisfy (3.1), i.e.

φk = 2k/2φ(2kx− j)

=
∑
n

√
2hφ(n)2k/2φ(2k+1x− 2j − n)

=
∑
n

hφ(n)2(k+1)/2φ(2k+1x− 2j − n)

=
∑
m

hφ(m− 2j)2(k+1)/2φ(2k+1x−m)

which implies φk is generated by
{

2(k+1)/2φ(2k+1x−m)
}
m∈Z, hence φk ∈ Vk+1 and

Vk ⊂ Vk+1. As a result, we have a nested vector spaces spanned by scaling functions:

{0} ⊂ · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(R).
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V0      V1      V2      V3

Figure 3.2: Nested vector spaces spanned by scaling functions

Next, consider the collection of all translations of the wavelet function ψ ∈ L2(R) with

dilation k ∈ Z.

Ψk :=
{

2k/2ψ(2kx− j) | j ∈ Z
}
.

Similarly, let Wk := closL2(R)Ψk and because of (3.2). We have, for any ψk ∈Wk,

ψk = 2k/2ψ(2kx− j)

=
∑
n

√
2hψ(n)2k/2φ(2k+1x− 2j − n)

=
∑
m

hψ(m− 2j)2(k+1)/2φ(2k+1x−m)

Hence, ψk ∈ Vk+1 and by the orthogonality of scaling and wavelet functions, Wk⊥Vk,
which implies Vk+1 = Wk ⊕ Vk. As a result, we have

L2(R) = · · · ⊕W−2 ⊕W−1 ⊕W0 ⊕W1 ⊕W2 ⊕ · · · .

                                                                                                       W2                                                                             W1                                              W0V0

V0      V1      V2      V3

V0     W0    W1    W2 

Figure 3.3: Nested vector spaces spanned by scaling functions and wavelet functions

3.3 Image Upsampling via Tight Frames

In this section, we will first device the upsampling algorithm via Tigh Frames and then

state clearly the step to upsample image in our algorithm.
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3.3.1 Device the Algorithm

Assume the desired high resolution image, fdesired, is band limited in L2(R); therefore,

L2(R) can be well-approximated by VJ for some J ∈ Z in the sense of representing the

image. For simplicity, assume also the low resolution image, flow, is in V0. Thought the

multi-resolution analysis,

VJ = WJ ⊕WJ−1 ⊕ · · · ⊕W0 ⊕ V0.

Therefore, fdesired is split into high frequency parts in Wk, 0 ≤ k ≤ J , and flow in V0,

by the analysis of the filters hs,t, s, t = 0, 1, 2. Analogue to [15], utilizing the perfect

reconstruction identity (3.4), we have

fdesired =

2∑
s,t=0

HT
s,tHs,tfdesired

= HT
0,0H0,0fdesired +

2∑
s,t=0

(s,t)6=(0,0)

HT
s,tHs,tfdesired

= (HT
0,0)2(H0,0)2fdesired +

1∑
j=0

2∑
s,t=0

(s,t) 6=(0,0)

(HT
0,0)jHT

s,tHs,t(H0,0)jfdesired

= · · ·

= (HT
0,0)J(H0,0)J fdesired +

J−1∑
j=0

2∑
s,t=0

(s,t)6=(0,0)

(HT
0,0)jHT

s,tHs,t(H0,0)jfdesired.

Notice (H0,0)J fdesired is the low resolution image in V0, thus (H0,0)J fdesired = flow. So,

fdesired = (HT
0,0)J(H0,0)J fdesired +

J−1∑
j=0

2∑
s,t=0

(s,t) 6=(0,0)

(HT
0,0)jHT

s,tHs,t(H0,0)jfdesired

= (HT
0,0)J flow +

J−1∑
j=0

2∑
s,t=0

(s,t)6=(0,0)

(HT
0,0)jHT

s,tHs,t(H0,0)jfdesired

= (HT
0,0)J flow + T (fdesired),

where

T (fdesired) :=

J−1∑
j=0

2∑
s,t=0

(s,t)6=(0,0)

(HT
0,0)jHT

s,tHs,t(H0,0)jfdesired

Let finput be the input image with size half of fdesired. We are going to upsamle finput

twice in size. That is to reconstruct fdesired from finput. Now, introduce the downsample
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operators Dm,n, m,n = 0, 1, as defined in [10]. Then, finput = D0,0flow, and hence

fdesired = (HT
0,0)J

1∑
m,n=0

DT
m,nDm,nflow + T (fdesired)

= (HT
0,0)JDT

0,0D0,0flow + (HT
0,0)J

1∑
m,n=0

(m,n)6=(0,0)

DT
m,nDm,nflow + T (fdesired)

= (HT
0,0)JDT

0,0finput + (HT
0,0)J

1∑
m,n=0

(m,n)6=(0,0)

DT
m,nDm,nflow + T (fdesired),

where the replacement of D0,0flow with finput is called pixel substitution. Therefore,

fdesired = (HT
0,0)JDT

0,0finput + (HT
0,0)J

1∑
m,n=0

(m,n) 6=(0,0)

DT
m,nDm,n(H0,0)J fdesired + T (fdesired)

:= (HT
0,0)JDT

0,0finput + P(fdesired). (3.5)

Thus, in order to reconstruct fdesired from finput, we suggest to iterate on it as:

fn+1 = (HT
0,0)JDT

0,0finput + P(fn). (3.6)

3.3.2 Proposed Algorithm

Finally, the step of using our image upsampling algorithm (Figure 1.1) is:

1. Set an initial guess, f0, as the bicubic upsampling of finput and tol as the tolerance

allowed.

2. Set fn = f0.

3. Find fn+1 by the equation (3.6) by these processes.

(a) Analysis fn to level J by Thigh Frame Hs,t.

(b) Perform pixel substitution with finput to (H0,0)J fn, i.e. D0,0(H0,0)J fn = finput.

(c) Synthesis them by HT
s,t to find fn+1.

4. Set f∗ = fn+1 if ‖fn+1 − fn‖2 ≤ tol, where f∗ is our upsampled image; else set

fn = fn+1 and repeat step 3 and 4.

In conclusion, our algorithm is able to upsample a low resolution image in V0 to a high

resolution image in VJ by iteration on the perfect reconstruction identity of J level

multi-resolution analysis via Tight Frames, where J is the lowest positive integer such

that the desired high resolution image can be well-approximated in VJ .



Chapter 3. Proposed Algorithm 11

3.4 Mathematical Analysis

In this section, the convergence of (3.6) is analyzed. First of all, let

AJ =



(H0,0)J

H0,1(H0,0)J−1

H1,0(H0,0)J−1

H1,1(H0,0)J−1

...

...

H0,1

H1,0

H1,1



and PJ =



DT
0,0D0,0 O O · · · O

O O O · · · O
...

...
. . . · · ·

...
...

...
...

. . .
...

O O O
... O︸ ︷︷ ︸

3(J−1)+1 times


,

where D0,0 is the downsampling matrix as described above and O is the zero matrix

with the same dimension as Hs,t. i.e. (3.5), without substituting finput and flow, can be

written as

fdesired = ATJ (PJAJ fdesired + (I− PJ)AJ fdesired) . (3.7)

Then, based on our definitions of AJ and PJ , for any given finput, we can always find x

defined as

x =



DT
0,0finput

0

0
...
...

0


,

such that

PJx = PJAJ fdesired.

Hence, (3.7) can be written as

fdesired = ATJ (PJx + (I− PJ)AJ fdesired) ,

and our algorithm (3.6) can be written as

fn+1 = ATJ (PJx + (I− PJ)AJ fn) , (3.8)

where x is found by the given low resolution image finput.

Similar to [19], write (3.8) as{
yn = PJx + (I− PJ)AJ fn,

fn+1 = ATJyn,
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and define the set S as

S := {y|PJy = PJx} ,

which is closed, nonempty and convex. Therefore, yn can be viewed as the minimizer of

the constrained minimization problem

yn = arg miny∈S

{
1

2
‖AJ fn − y‖22

}
(3.9)

By adding the indicator function iS for the convex set S, which is defined as

iS(y) =

{
0, if y ∈ S,
+∞, otherwise,

the constrained minimization (3.9) can be written as an unconstrained minimization:

yn = arg miny∈S

{
1

2
‖AJ fn − y‖22 + iS(y)

}
(3.10)

Besides, we can also write fn+1 as a minimization like:

fn+1 = arg minf
1

2

∥∥ATJyn − f
∥∥2

2
. (3.11)

Combining (3.10) and (3.11), our algorithm can be viewed as solving the following

minimization:

f∗ = arg minf

{
arg miny∈S

{
1

2
‖AJ f− y‖22

}}
. (3.12)

Remarks

1. The convergence of our algorithm is not yet proved. Thought out our experiments

on this algorithm, the proposed algorithm does not have the global convergence;

nevertheless, the local convergence behaviour is observed in our experiment with

a bicubic initial guess.

2. As it can be seen in the formula, the thresholding is not used; therefore, it is pos-

sible that the algorithm will amplify the noise. Nevertheless, it can be avoided by

choosing a better initial guess, by our observation, the result of bicubic upsampling

seems to be a good initial guess so far.

3. More investigation on the initial guess, proof of convergence and improvement of

our algorithm will be studied in the future and is described in chapter 5.



Chapter 4

Results

We are going to compare the results with those of [2]. In this chapter, the image

comparison can be found and the video comparison can be found on this webpage1.

Three test images and their bicubic upsampling results are shown in Figure 4.1.

Figure 4.1: The three test images (left) and their bicubic results (right)

1http://personal.ie.cuhk.edu.hk/∼sclee6/ERG4920CR/result.html
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Results comparison of the first test image:

Figure 4.2: Input, By [2], Level 2, Level 4 and Level 6 (Left: From up to down)
Bicubic, Level 1, Level 3, Level 5 and Level 7 (Right: From up to down)
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Comparison of results of Bicubic, [2] and our algorithm (Level 4):

Figure 4.3: Bicubic Result

Figure 4.4: Result of [2]

Figure 4.5: Result of our algorithm (Level 4)

And the comparison of the second test image can be found in Figure 4.6:
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Figure 4.6: Input, By [2], Level 2, Level 4 and Level 6 (Left: From up to down)
Bicubic, Level 1, Level 3, Level 5 and Level 7 (Right: From up to down)
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Comparison of results of Bicubic, [2] and our algorithm (Level 4):

Figure 4.7: Bicubic Result

Figure 4.8: Result of [2]

Figure 4.9: Result of our algorithm (Level 4)

And the comparison of the third test image can be found in Figure 4.10:
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Figure 4.10: Input, By [2], Level 2, Level 4 and Level 6 (Left: From up to down)
Bicubic, Level 1, Level 3, Level 5 and Level 7 (Right: From up to down)
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Comparison of results of Bicubic, [2] and our algorithm (Level 4):

Figure 4.11: Bicubic Result

Figure 4.12: Result of [2]

Figure 4.13: Result of our algorithm (Level 4)
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And the enlarged version of particular part of all levels and [2] can be found in Figure
4.14:

Figure 4.14:
By [2], Level 1, Level 2 and Level 3 (Odd number rows: From left to right)

Level 4, Level 5, Level 6 and Level 7 (Even number rows: From left to right)



Chapter 5

Conclusions and Future

Directions

The algorithm is implemented by Matlab R2009b and is executed on a 1.66GHz

CPU N280 AUSU EEEPC. Different level tight frame algorithms take different time

to perform the upsampling. The higher the level is, the longer the time is required. Of

course, it also depends on the initial guess and stopping criteria. In our implementation,

bicubic upsampling of the input image is used as the initial guess and e :=
‖fn+1−fn‖2
‖finput‖2

is used to measure the reconstruction error. Our stopping criteria is e < 0.001. On

average, the computation time required for an 5122 pixels input image upsampling to

10242 pixels of seven levels used in the algorithm are listed below:

It is relatively efficient and comparable to those using typical iterative approach. For

Table 5.1: Computation time

Level 1 2 3 4 5 6 7

Time taken 79s 292s 10 mins 19 mins 36 mins 67 mins 112 mins

example, the image upsampling provided by [2] executed on the same situation requires

approximately 13 mins. We have also used the images from [2] as our input which can

be found on

http://www.cse.cuhk.edu.hk/∼leojia/projects/upsampling/index.html.

By comparing with the results of [2], it can be seen that our results at higher level

preserve more details and the visual perception seems better; however, the time spent

is much longer. On the other hand, although our results at lower level are not as good

as those of [2], our implementation speed at lower level is faster than [2] and the results

is considerably acceptable. For more details with the video comparison and the alpha

version of image upsampling software of our algorithm, they can be found on:

http://personal.ie.cuhk.edu.hk/∼sclee6/ERG4920CT/result.html;

http://personal.ie.cuhk.edu.hk/∼sclee6/ERG4920CT/Upsampling pkg.exe;
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Besides, more importantly, our algorithm does not require users adjust any parameters

for image upsampling for each level that is different from [2] and many from the literature.

In the future, the level can be automatically determined so that the algorithm can

completely automatically upsample images.

In a word, we proposed an interesting and researchable algorithm for image upsampling

based on the multiresolution analysis via Tight Frames. This algorithm yields a better

visual quality comparing to those in literature. We will further study on it in the ways

being described below.

As mentioned in the remark of chapter 4, the proof of the local convergence of our

algorithm with bicubic initial guess should be dug out first. Like the convergence proof

in [19], the idea of proximal forward-backward splitting in [20] may be useful in our

convergence proof. Besides, different upsampling factors other than two (which is the

only factor considered in this thesis) should be further considered. For other upsampling

factors, other tight frame systems should be used. In this thesis, linear B-spline is

used because its low pass filter is suitable to upsample an image twice its size due to

its coefficient weighting. Similarly, in the future, cubic B-spline may be considerably

suitable for upsampling with factor four.

Furthermore, for reconstructing a better image from the input (low resolution) image,

some prior information about the desired high resolution image is always preferred.

In order to accomplish this, we are going to make use of the natural science statistic

which provide the prior information about the gradient density distribution of natural

images as the one mentioned in the supplementary file of [2]. In our proposed algorithm,

one of the high frequency band h1 provide exactly the information of gradient of the

image. In the future, we are going to use the distribution from natural science to

constraint this high frequency band so that the results will more close to the desired

high resolution image. Even more, we can try to use all these gradient distributions

from natural statistics to constraint all the high frequency bands in our algorithm to

see if a better output image can be achieved. Moreover, it can be seen in our results

that too high level reconstruction may provide too much noise component and also

suffer from expensive computation time while too low level cannot fully reconstruct the

natural details. Therefore, it is also important for us to find an appropriate level for our

algorithm to upsample images in the future.
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