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Image Upsampling

Single Image Upsampling

[ ——

by,

 Given an input image finpur,
o let say, of 256 x 256 pixels;
o Reconstruct a 512 x 512 pixels image fgesireqd-
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Image Upsampling

Commonly found in all image editing software.
Performed by bicubic interpolation,

because of its implementation efficient.
However, the resulting image are blurry.
Therefore, our aims is:

Perform single image upsampling that preserves
natural details.

¢ In this thesis, we have used
o Tight Frame and Multi-resolution Analysis
 to design our upsampling algorithm.
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Our Proposed Algorithm

e Input is assumed of

o However, are of
o To overcome this, using

o RGB is converted to YVU,

e and the is used as
. are upsampled by
e Hence, is guaranteed,
 but not :
 In addition, 2-D images are
as a in our algorithm.
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Tight Frames

Tight Frames

A system X is called a tight frames system of Ly(R) if

f=> (fg)g. Vfel®(R).
geX

A tight frames system can be constructed by starting
with a scaling function ¢ € Ly(R) and letting it
satisfies the dilation equation:

lo
o(x)= > V2hy(n)¢(2x —n) VYxeR. (1)

n:—/1
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Tight Frames

» Here h, are low-pass filter coefficients, with
length (L — /).

o Therefore, given a suitable low-pass filter, one
can solve (1) to find a scaling function ¢.

With this ¢ and given corresponding high-pass filters
h, with length (s — s1),

one can find the tight frames function ¢ by satisfying
a similar dilation equation

WY(x) = i V2h,(n¢(2x —n)  VYxeR. (2)

n=—84
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Tight Frames

Hence, given suitable low-pass and high-pass filters,
one can construct a tight frames system

Xy = {2k/2¢(2"x —N v evik,je Z} .

by solving (1) and (2).
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Tight Frames

Hence, given suitable low-pass and high-pass filters,
one can construct a tight frames system

Xy = {2k/2¢(2"x —N v evik,je Z} .

by solving (1) and (2).
In this thesis, piecewise linear B-spline is used to
construct tight frames system:
o low-pass: hy = 1 [1,2,1];
« high-pass: b = ¥2[1,0, —1] and
h = 1[-1,2,—1].
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Tight Frames

For 2-D images, tensor product is used, hence the
2-D filters hst, s, = 0,1,2, are defined by

hs,t = h; ® hs.
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Tight Frames

For 2-D images, tensor product is used, hence the
2-D filters hst, s, = 0,1,2, are defined by

hs,t = h; ® hs.

In this thesis, periodic boundary condition is used
and filters are represented in their matrix form.

e.g. Hp for hp and Hyp o for hg o are written as

(2 1
1 2

Ho=x |0

FNJEN

0 0
10
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and Hppo = Hg- ® Hp.
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Tight Frames

Then, we have this perfect reconstruction identity:

2
> " H{Hs = identity matrix (3)

s,t=0
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Tight Frames

Then, we have this perfect reconstruction identity:

2
> " H{Hs = identity matrix (3)

s,t=0

Our algorithm is basically designed by using (3).
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Multi-resolution Analysis

This tight frames system can generate a
multi-resolution analysis.
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Multi-resolution Analysis

Multi-resolution Analysis

This tight frames system can generate a
multi-resolution analysis.
It can be illustrated by this graph:

VoV TV V3

Ny

Vo LWy L W; LW,
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o Assume fgesireq IS band limited in La(R),

and it has a representation in V, for some J € Z.
After J times convolution with low-pass filter hg o,
(HO,O)deesired is in W.

Using the downsampling operator, Dy, p,

m,n = 0,1, defined by [Bose, 1998],
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Image Upsampling via Tight Frames

o Assume fgesireq IS band limited in La(R),

and it has a representation in V, for some J € Z.
After J times convolution with low-pass filter hg o,
(HO,O)deesired is in W.

Using the downsampling operator, Dy, p,

m,n =0, 1, defined by [Bose, 1998],

We assume Dg:ofinput = D(Z:O DO,O(HO,O)deesired-
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Image Upsampling via Tight Frames

o Assume fgesireq IS band limited in La(R),
e and it has a representation in V, for some J € Z.
« After J times convolution with low-pass filter hg o,
° (HO,O)deesired is in W.
 Using the downsampling operator, Dp, p,
m,n = 0,1, defined by [Bose, 1998],
o We assume Dg:ofinput = D(Z:O DO,O(HO,O)deesired-
o By multi-resolution analysis,

Vi=W,eW, 1&--& Wy W.
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o foesired € V can be split into
@ high frequency parts in Wy, 0 < k < J;
@ and fip € Wo.

o Deductively applying the perfect reconstruction
identity (3), we have

2
T
fdesired - Z Hs7tHs7tfdesired

s,t=0
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Image Upsampling via Tight Frames

o foesired € V can be split into
@ high frequency parts in Wy, 0 < k < J;
@ and fip € Wo.

o Deductively applying the perfect reconstruction
identity (3), we have

2
T
fdesired - Z Hs7tHs7tfdesired

s,t=0

2
T T
= HyoHoofdesired + E Hs +Hs, tf desired
s,t=0

(s,)#(0,0)
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= (HO 0) (HO 0 fdes:red + Z Z Ho o Hs t(HO 0) fdestred
_O [,
= (s.5£(0.0)
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Image Upsampling via Tight Frames

= (HO 0) (HO 0 fdes:red + Z Z Ho o Hs t(HO 0) fdestred

=0 5,t=0
(s.)#(0,0)
J—1 2
= (H(;r,o)J(HO,O)deesired + Z Z Hc;’:o)jHsT,tHs,t(HO,O)jfdesirew
j=0 5,t=0

(:0)#(0,0)
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= (HO 0) (HO 0 fdes:red + Z Z Ho o Hs t(HO 0) fdestred

=0 5,t=0
(s.)#(0,0)
J—1 2
= (H(;r,o)J(HO,O)deesired + Z Z (Hc;’:o)jHsT,tHs,t(HO,O)jfdesired-
j=0 5,t=0

(:0)#(0,0)
By our assumption: D(IODO,O(HO,O deesired = D&Of,-nput,in Vo,

1
J
fdesired = (Hoo Z D 'm,n Dmn HO 0) fdesired
m,n=0
J—1 2

+Z Z (Hg.0) H (Hs.t(Ho,0 Y fdesired

j=0 s5,t=0
(s,1)#(0,0)
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Image Upsampling via Tight Frames

]
= (HoT,o)JDg:o DO,O(Hc;r,o)deesired + (HoT,o)J Z Dzr-,,an,n(Hg:o)deesired
m,n=0

(m,n)#(0,0)
J—1 2 '
+ Z HO 0 ng:tHs,t(HO,O)/fdesired
0

120 (5500
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Image Upsampling via Tight Frames

1
(HOY:O)JD({O DO,O(H(;r,O)deesired + (H(IO)J Z Dr:z,an,n(ngo)deesired
m,n=0

(m,n)#(0,0)

2
+ Z (H(IO )j Hg:tHs,t(HO,O)jfdesired

1
(HJO)JD({ofinput + (HOT,O)J Z D;;,an,n(HoTo )deesired

(m.n}(0.0)
J—1 2
+ Z HO O S t(HO 0) fdestred
j:0 s,t=0
(s, t) (0,0)
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Image Upsampling via Tight Frames

So,
1

fdesired = (Hg:o)JDcIofinput + (Hor,o)J Z Dr:;,an,n(HO,O)deesired

(m.m%(0.0)
J—1 2
+ Z HO 0 t(HO O) fdestred (4)
j=0 5,t=0
(s:1) t (0,0)
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Image Upsampling via Tight Frames

So,
1

fdesired = (HoT,o)JDc)T,ofinput + (Hor,o)J Z Dr:;,an,n(HO,O)deesired

(m,n)# (00)

J—1 2

+ Z Z HO O t(HO O) fdestred (4)
i=0 s,1=0
= (s0%00)

And our proposed algorithm is iterating on this
equation (4) as:

;
frr = (HOT,O)JDoT,ofinput + (HoT,o)J Z D;z,an,n(HO,O)an
(m,n}(0,0)
J—1 2
+ Z Ho 0 I(HO 0) f (5)
j=0 5,t=0
(5,0)£(0,0)
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The step of using our is:
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Image Upsampling via Tight Frames

The step of using our is:

© Set an initial guess, fy, as the bicubic
upsampling of f;,,,: and fol as the tolerance
allowed.
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upsampling of f;,,,: and fol as the tolerance
allowed.

® Find f,, 1 by the equation (5)
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Image Upsampling via Tight Frames

The step of using our is:

© Set an initial guess, fy, as the bicubic
upsampling of f;,,,: and fol as the tolerance
allowed.

e Setf, =1,.

® Find f,, 1 by the equation (5)

o Setf =1, if |f,11 — 4|, < tol, where £ is our
upsampled image; else set f, = f,. 1 and repeat
step 3 and 4.
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Results

Results

e Click Here (Hyper Link)

e Local Files:
->
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Figure:
By [Shan,2009], Level 1, Level 2 and Level 3 (Upper: From left
to right)
Level 4, Level 5, Level 6 and Level 7 (Lower: From left to right)
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Results

Figure:
By [Shan,2009], Level 1, Level 2 and Level 3 (Upper: From left
to right)
Level 4, Level 5, Level 6 and Level 7 (Lower: From left to right)

ERG 4920CT 09/10
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Table: Computation time
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Conclusions and Future Directions

e For upsampling 512 x 512 to 1024 x 1024

o Computation time (on 1.66GHz CPU N280
AUSU EEEPC, Matlab 2009b):

Table: Computation time

Level 1 2 3 4 5 6 7
Timetaken 79s 292s 10mins 19mins 36mins 67 mins 112 mins

o Lower level: faster than [Shan,2009] (=~ 13 mins)
o Higher level: enhanced visual perception
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Conclusions and Future Directions

For a fixed level (J) reconstruction,

it is parameter-free.

Automatically upsampling images.

In the future,

Natural Science statistical distribution.
As prior information of images.

Proof of local convergence.
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THE END

Thanks for your attentions!

Q&A
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