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Introduction Image Upsampling

Single Image Upsampling

• Given an input image finput ,
• let say, of 256 x 256 pixels;
• Reconstruct a 512 x 512 pixels image fdesired .
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Introduction Image Upsampling

• Commonly found in all image editing software.

• Performed by bicubic interpolation,
• because of its implementation efficient.
• However, the resulting image are blurry.
• Therefore, our aims is:

Perform single image upsampling that preserves
natural details.

• In this thesis, we have used
• Tight Frame and Multi-resolution Analysis
• to design our upsampling algorithm.
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Introduction Our Proposed Algorithm

Our Proposed Algorithm
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Introduction Our Proposed Algorithm

• Input is assumed of gray-scale.

• However, real-world images are of RGB scale.
• To overcome this, using YUV colour space.
• RGB is converted to YVU,
• and the Y channel is used as input.
• V and U channels are upsampled by bicubic

interpolation.
• Hence, human perception is guaranteed,
• but not image chrominance.
• In addition, 2-D images are stacked column by

column as a 1-D column vector in our algorithm.
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Mathematical Tools Tight Frames

Tight Frames

A system X is called a tight frames system of L2(R) if

f =
∑
g∈X

〈f ,g〉g, ∀f ∈ L2(R).

A tight frames system can be constructed by starting
with a scaling function φ ∈ L2(R) and letting it
satisfies the dilation equation:

φ(x) =

l2∑
n=−l1

√
2hφ(n)φ(2x − n) ∀x ∈ R. (1)
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Mathematical Tools Tight Frames

• Here hφ are low-pass filter coefficients, with
length (l2 − l1).

• Therefore, given a suitable low-pass filter, one
can solve (1) to find a scaling function φ.

With this φ and given corresponding high-pass filters
hψ with length (s2 − s1),

one can find the tight frames function ψ by satisfying
a similar dilation equation

ψ(x) =

s2∑
n=−s1

√
2hψ(n)φ(2x − n) ∀x ∈ R. (2)
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Mathematical Tools Tight Frames

Hence, given suitable low-pass and high-pass filters,
one can construct a tight frames system

XΨ :=
{

2k/2ψ(2kx − j) | ψ ∈ Ψ; k , j ∈ Z
}
.

by solving (1) and (2).

In this thesis, piecewise linear B-spline is used to
construct tight frames system:
• low-pass: h0 = 1

4 [1,2,1];

• high-pass: h1 =
√

2
4 [1,0,−1] and

h2 = 1
4 [−1,2,−1].
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Mathematical Tools Tight Frames

For 2-D images, tensor product is used, hence the
2-D filters hs,t , s, t = 0,1,2, are defined by

hs,t = ht ⊗ hs.

In this thesis, periodic boundary condition is used
and filters are represented in their matrix form.

e.g. H0 for h0 and H0,0 for h0,0 are written as

H0 =
1
4



2 1 0 · · · 0 1

1 2 1
. . . 0 0

0 1 2
. . . 0 0

...
. . . . . . . . . . . .

...

0 0 0
. . . 2 1

1 0 0 · · · 1 2


and H0,0 = HT

0 ⊗ H0.
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Mathematical Tools Tight Frames

Then, we have this perfect reconstruction identity:

2∑
s,t=0

HT
s,tHs,t = identity matrix (3)

Our algorithm is basically designed by using (3).
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Mathematical Tools Multi-resolution Analysis

Multi-resolution Analysis

This tight frames system can generate a
multi-resolution analysis.
It can be illustrated by this graph:

                                                                                                       W2                                                                             W1                                              W0V0

V0      V1      V2      V3

V0     W0    W1    W2 
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Proposed Algorithm Image Upsampling via Tight Frames

Image Upsampling via Tight Frames

• Assume fdesired is band limited in L2(R),
• and it has a representation in VJ for some J ∈ Z.
• After J times convolution with low-pass filter h0,0,
• (H0,0)Jfdesired is in V0.
• Using the downsampling operator, Dm,n,

m,n = 0,1, defined by [Bose, 1998],
• We assume DT

0,0finput = DT
0,0D0,0(H0,0)Jfdesired .

• By multi-resolution analysis,

VJ = WJ ⊕WJ−1 ⊕ · · · ⊕W0 ⊕ V0.
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Proposed Algorithm Image Upsampling via Tight Frames

• fdesired ∈ VJ can be split into

1 high frequency parts in Wk , 0 ≤ k ≤ J;
2 and finput ∈ V0.

• Deductively applying the perfect reconstruction
identity (3), we have

fdesired =
2∑

s,t=0

HT
s,tHs,tfdesired

= HT
0,0H0,0fdesired +

2∑
s,t=0

(s,t) 6=(0,0)

HT
s,tHs,tfdesired
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And our proposed algorithm is iterating on this
equation (4) as:
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+
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Proposed Algorithm Image Upsampling via Tight Frames

The step of using our is:

1 Set an initial guess, f0, as the bicubic
upsampling of finput and tol as the tolerance
allowed.

2 Set fn = f0.
3 Find fn+1 by the equation (5)
4 Set f∗ = fn+1 if ‖fn+1 − fn‖2 ≤ tol, where f∗ is our

upsampled image; else set fn = fn+1 and repeat
step 3 and 4.
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• Click Here (Hyper Link)
• Local Files:

->./WebPAge/ERG4920CT/result.html

ERG 4920CT 09/10 19 / 43 FYP Presentation May 20, 2010

http://personal.ie.cuhk.edu.hk/~sclee6/ERG4920CT/result.html
./WebPAge/ERG4920CT/result.html


Results Results

Results
• Click Here (Hyper Link)
• Local Files:

->./WebPAge/ERG4920CT/result.html

ERG 4920CT 09/10 19 / 43 FYP Presentation May 20, 2010

http://personal.ie.cuhk.edu.hk/~sclee6/ERG4920CT/result.html
./WebPAge/ERG4920CT/result.html


Results Results

Bicubic

TF Level 1
ERG 4920CT 09/10 20 / 43 FYP Presentation May 20, 2010



Results Results

Bicubic

TF Level 4
ERG 4920CT 09/10 21 / 43 FYP Presentation May 20, 2010



Results Results

Bicubic

TF Level 7
ERG 4920CT 09/10 22 / 43 FYP Presentation May 20, 2010



Results Results

[Shan, 2009]

TF Level 1
ERG 4920CT 09/10 23 / 43 FYP Presentation May 20, 2010



Results Results

[Shan, 2009]

TF Level 4
ERG 4920CT 09/10 24 / 43 FYP Presentation May 20, 2010



Results Results

[Shan, 2009]

TF Level 7
ERG 4920CT 09/10 25 / 43 FYP Presentation May 20, 2010



Results Results

Figure:
By [Shan,2009], Level 1, Level 2 and Level 3 (Upper: From left
to right)
Level 4, Level 5, Level 6 and Level 7 (Lower: From left to right)
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Conclusions and Future Directions Conclusions and Future Directions

Conclusions and Future Directions

• For upsampling 512 x 512 to 1024 x 1024
• Computation time (on 1.66GHz CPU N280

AUSU EEEPC, Matlab 2009b):

Table: Computation time

Level 1 2 3 4 5 6 7
Time taken 79s 292s 10 mins 19 mins 36 mins 67 mins 112 mins

• Lower level: faster than [Shan,2009] (≈ 13 mins)
• Higher level: enhanced visual perception

ERG 4920CT 09/10 41 / 43 FYP Presentation May 20, 2010



Conclusions and Future Directions Conclusions and Future Directions

Conclusions and Future Directions
• For upsampling 512 x 512 to 1024 x 1024

• Computation time (on 1.66GHz CPU N280
AUSU EEEPC, Matlab 2009b):

Table: Computation time

Level 1 2 3 4 5 6 7
Time taken 79s 292s 10 mins 19 mins 36 mins 67 mins 112 mins

• Lower level: faster than [Shan,2009] (≈ 13 mins)
• Higher level: enhanced visual perception

ERG 4920CT 09/10 41 / 43 FYP Presentation May 20, 2010



Conclusions and Future Directions Conclusions and Future Directions

Conclusions and Future Directions
• For upsampling 512 x 512 to 1024 x 1024
• Computation time (on 1.66GHz CPU N280

AUSU EEEPC, Matlab 2009b):

Table: Computation time

Level 1 2 3 4 5 6 7
Time taken 79s 292s 10 mins 19 mins 36 mins 67 mins 112 mins

• Lower level: faster than [Shan,2009] (≈ 13 mins)
• Higher level: enhanced visual perception

ERG 4920CT 09/10 41 / 43 FYP Presentation May 20, 2010



Conclusions and Future Directions Conclusions and Future Directions

Conclusions and Future Directions
• For upsampling 512 x 512 to 1024 x 1024
• Computation time (on 1.66GHz CPU N280

AUSU EEEPC, Matlab 2009b):

Table: Computation time

Level 1 2 3 4 5 6 7
Time taken 79s 292s 10 mins 19 mins 36 mins 67 mins 112 mins

• Lower level: faster than [Shan,2009] (≈ 13 mins)
• Higher level: enhanced visual perception

ERG 4920CT 09/10 41 / 43 FYP Presentation May 20, 2010



Conclusions and Future Directions Conclusions and Future Directions

Conclusions and Future Directions
• For upsampling 512 x 512 to 1024 x 1024
• Computation time (on 1.66GHz CPU N280

AUSU EEEPC, Matlab 2009b):

Table: Computation time

Level 1 2 3 4 5 6 7
Time taken 79s 292s 10 mins 19 mins 36 mins 67 mins 112 mins

• Lower level: faster than [Shan,2009] (≈ 13 mins)

• Higher level: enhanced visual perception

ERG 4920CT 09/10 41 / 43 FYP Presentation May 20, 2010



Conclusions and Future Directions Conclusions and Future Directions

Conclusions and Future Directions
• For upsampling 512 x 512 to 1024 x 1024
• Computation time (on 1.66GHz CPU N280

AUSU EEEPC, Matlab 2009b):

Table: Computation time

Level 1 2 3 4 5 6 7
Time taken 79s 292s 10 mins 19 mins 36 mins 67 mins 112 mins

• Lower level: faster than [Shan,2009] (≈ 13 mins)
• Higher level: enhanced visual perception

ERG 4920CT 09/10 41 / 43 FYP Presentation May 20, 2010



Conclusions and Future Directions Conclusions and Future Directions

• For a fixed level (J) reconstruction,

• it is parameter-free.
• Automatically upsampling images.
• In the future,
• Natural Science statistical distribution.
• As prior information of images.
• Proof of local convergence.
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THE END THE END

Thanks for your attentions!

Q & A
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