

Shape Correspondence on the Unit Sphere

Sing Chun Lee¹, Misha Kazhdan¹

Preparing for Submission to Symposium on Geometry Processing 2019

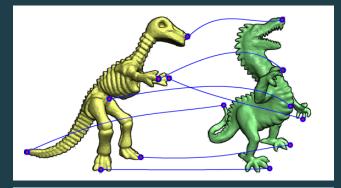
¹Johns Hopkins University

Outline

- Problem Description
- Related Works
- Review of Mathematical Tools
- Problem Formulation
- Our Approach
- Current Results and Demo
- Q&A and Feedback

Problem Description

- Shape Correspondence
 - Given two shapes $S_1, S_2 \subset \mathbb{R}^3$, we want to find meaningful map $\Xi : S_1 \to S_2$ such that $\{(s, \Xi(s) | s \in S_1, \Xi(s) \in S_2\}$ give us a meaningful correspondence between them





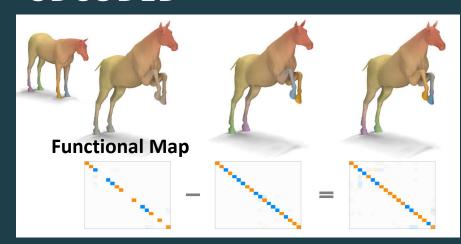
^{*}Pictures borrowed from: O. Kaick, D. Cohen-Or et al., "A Survey on Shape Correspondence", in CGF 2011

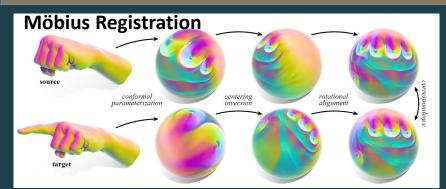
Method Taxonomy

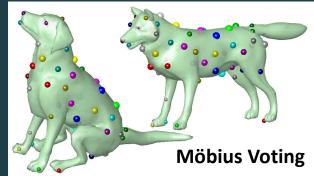
- Output:
 - Full vs. Partial
 - *Dense* vs. Sparse
- Objective function:
 - Rigid vs. Deformation
- Approach:
 - Fully-automatic vs. Semi-automatic
 - Global vs. *Local*
 - Pairwise vs. Groupwise

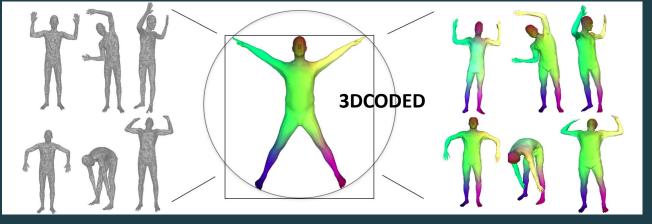
Related Works

- Möbius Voting
- Möbius Registration
- Functional Map
- Non-rigid Puzzle
- 3DCODED









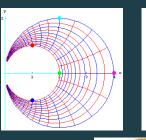
^{*}Pictures borrowed from the captioned publications

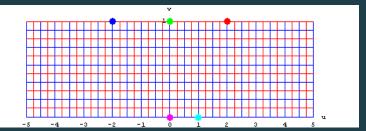
Möbius Transformation

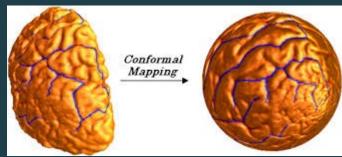
- Aka. Homographies
- General form in \mathbb{C} ($ad bc \neq 0$):

•
$$f(z) = \frac{az+b}{cz+d}$$

- Matrix form $\mathbb{C}^{2\times 2}$ (det $\neq 0$):
 - $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$







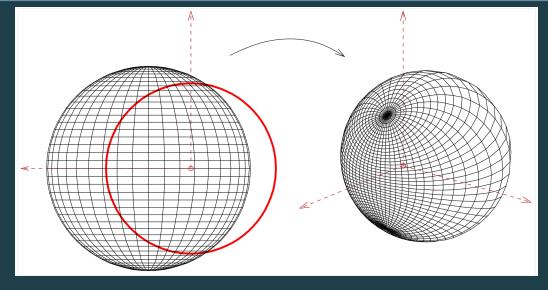
- It's conformal (angle-preserved): map line to a line or circle, and map circle to a line or circle
- Area ratio before/after transformation: conformal factors
- A tool to map genus zero shape (S) to the unit sphere (\mathbb{S}^2)
 - Denote by $\Phi: S \to \mathbb{S}^2$

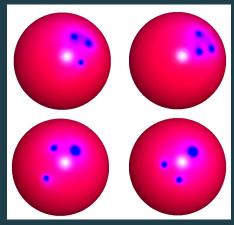
*Pictures borrowed from "Landmark constrained genus zero surface conformal mapping and its application to brain mapping research, IMACS 2006

Möbius Registration via Spherical Inversion

•
$$\eta_c : \mathbb{S}^2 \to \mathbb{S}^2$$
• $\eta_c \coloneqq (1 - |c|^2) \frac{p+c}{|p+c|^2} + c$

- Unique Möbius transformation (up to Rotation) by finding η_c such that the average of the conformal factors is zero
- i.e. center of mass is at the origin
- Möbius registration = aligning conformal factors for rotation







Generalized Optical Flow on Surface

• A generalized version of optical flow on surface is defined as follows: given two signals $f_i: S_i \subset \mathbb{R}^3 \to \mathbb{R}$ on two surface meshes S_i with correspondence, we can estimate an optical flow \vec{v} by minimizing:

$$E(\vec{v}) = \int_{\mathbb{R}^3} \|\langle \nabla f_1(p), \vec{v}(p) \rangle - \delta(p)\|^2 + \|\langle \nabla f_2(p), \vec{v}(p) \rangle - \delta(p)\|^2 + \epsilon \|\nabla \vec{v}(p)\|^2 dp$$

where $\langle \nabla f_i(p), \vec{v}(p) \rangle$ is the advection of the signal between two meshes, $\delta(p) = (f_1(p) - f_2(p))$ is the difference between two signals, and $\|\nabla \vec{v}(p)\|$ is the smoothness term to regularize the vector field \vec{v}

Problem Formulation

- Given two shapes $S_1, S_2 \subset \mathbb{R}^3$, corresponding signals $f_i: S_i \to \mathbb{R}^d$
- Compute and sample f_i of S_i on \mathbb{S}^2 via unique centered Möbius transformation, namely $\Phi_i: S_i \to \mathbb{S}^2$, i.e. pullback to \mathbb{S}^2 $g_i \coloneqq f_i \circ \Phi_i^{-1} \colon \mathbb{S}^2 \to \mathbb{R}^d$
- Perform initial alignment (a rotation) that minimize

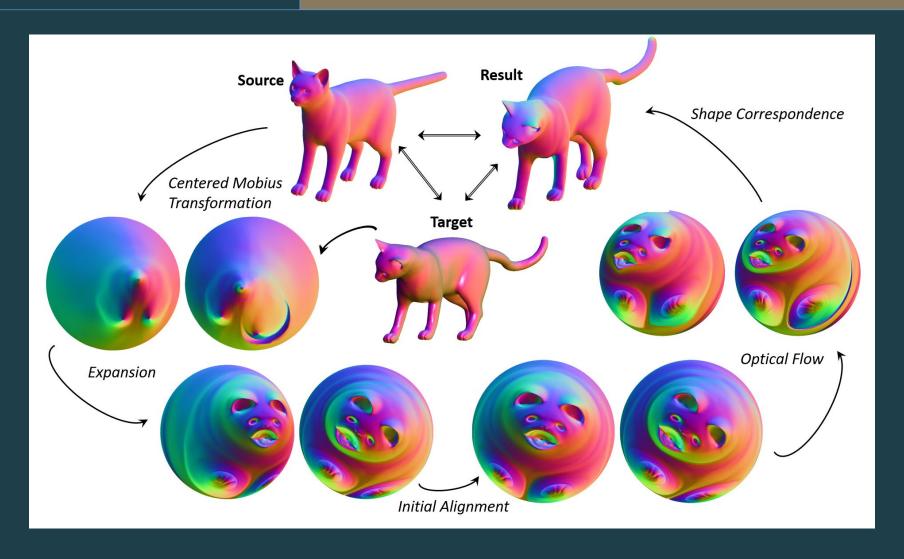
•
$$E(R) = \min_{R} \int_{\mathbb{S}^2} ||g_1 \circ R(p) - g_2(p)||^2 dp$$

Estimate optical flow that minimize

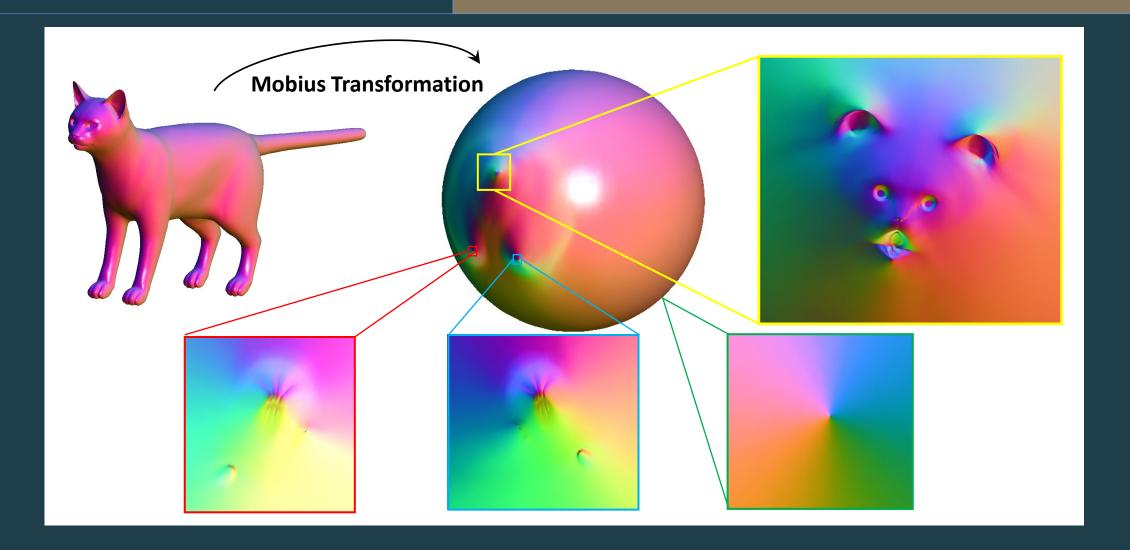
•
$$E(\vec{v}) = \int_{\mathbb{S}^2} \|\langle \nabla g_1 \circ R(s), \vec{v}(s) \rangle - \delta(s) \|^2 + \|\langle \nabla g_2(s), \vec{v}(s) \rangle - \delta(s) \|^2 + \epsilon \|\nabla \vec{v}(s)\|^2$$

where
$$\delta(s) = g_1 \circ R(s) - g_2(s)$$

Overview



Step 1 – Möbius Transformation

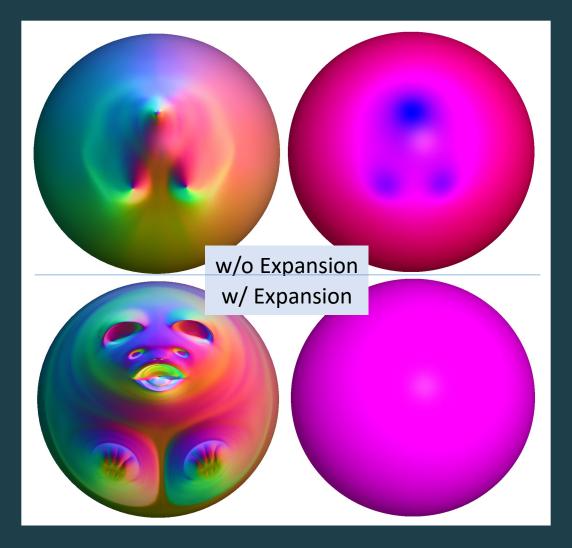


Step 2 – Expansion

- Problem: dense region is too packed

 hard to discretize
- Idea: expand the dense region out and shrink the sparse region
- How? Using Poisson Equation
- Given a conformal factor $\phi(x)$, we would like to uniformized the values
- Goal: find a vector field \vec{v} such that $\phi(x+t\vec{v}(x))$ is uniform
- Solve: $\Delta \phi(x + t\vec{v}(x)) = \frac{d}{dt}\phi(x + t\vec{v}(x))$ at t = 0
- Solution: $\vec{v}(x) = -\frac{2\Delta\phi}{\phi} = -2\Delta\log\phi$

Expansion Result



Step 3 – Corresponding Signals

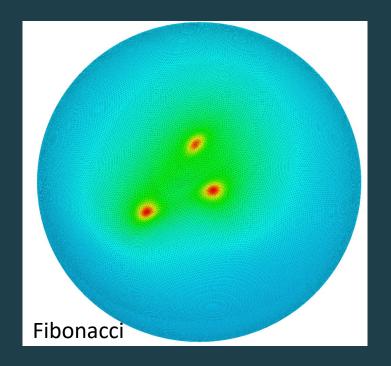
- Isometric invariant signatures
 - Heat Kernel Signature (HKS)
- Eigenvalues and Eigenvectors of Generalized Eigenvalue Decomposition of the Shape Operator
 - Solving $Sx = \lambda Mx$ where S and M are the stiffness and mass matrices
 - Algorithm: Arnoldi iteration
- Let's $lpha_i$ be the eigenvector associated with eigenvalue λ_i
- HKS is defined by:
 - $h_t(x,y) = \sum_{i=0}^{\infty} e^{-\lambda_i t} \alpha_i(x) \alpha_i(y)$

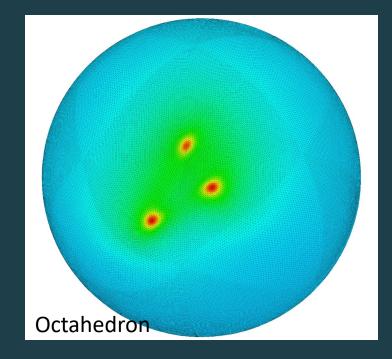
Step 3 – Computed Signals

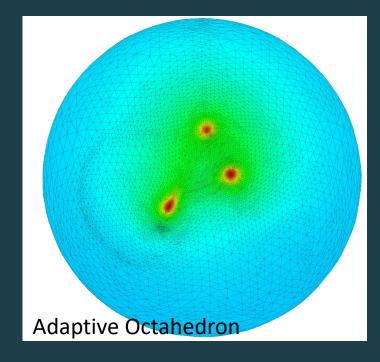


Step 4 – Sampling on the Sphere

- Fibonacci Sampling
- Octahedron Sampling
- Adaptive Octahedron Sampling



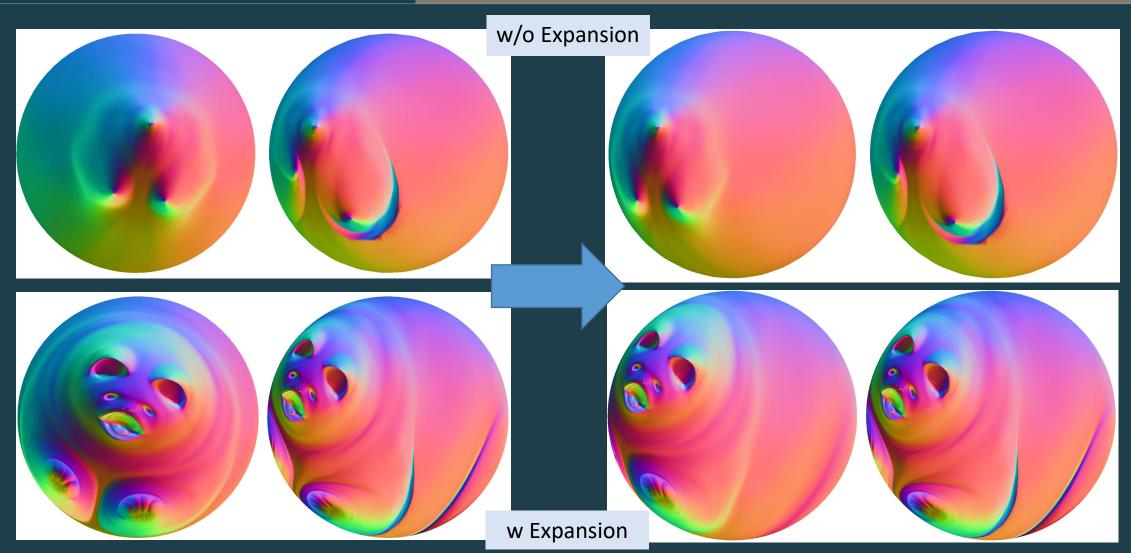




Step 5 – Initial Alignment

- Harmonic Transform for efficient maximizing of correlation
 - $\overline{| \cdot E(\rho_R)|} = \min_{\rho_R} ||g_1 \rho_R(g_2)||^2$
 - $E(\rho_R) = \min_{\rho_R} ||g_1||^2 + ||g_2||^2 2\langle g_1, \rho_R(g_2) \rangle$
 - $E(\rho_R) = \max_{\rho_R} \langle g_1, \rho_R(g_2) \rangle$
- It is equivalent to correlation, which can done efficiently using Harmonic Transform for the sphere

Alignment Result



Initial Correspondence

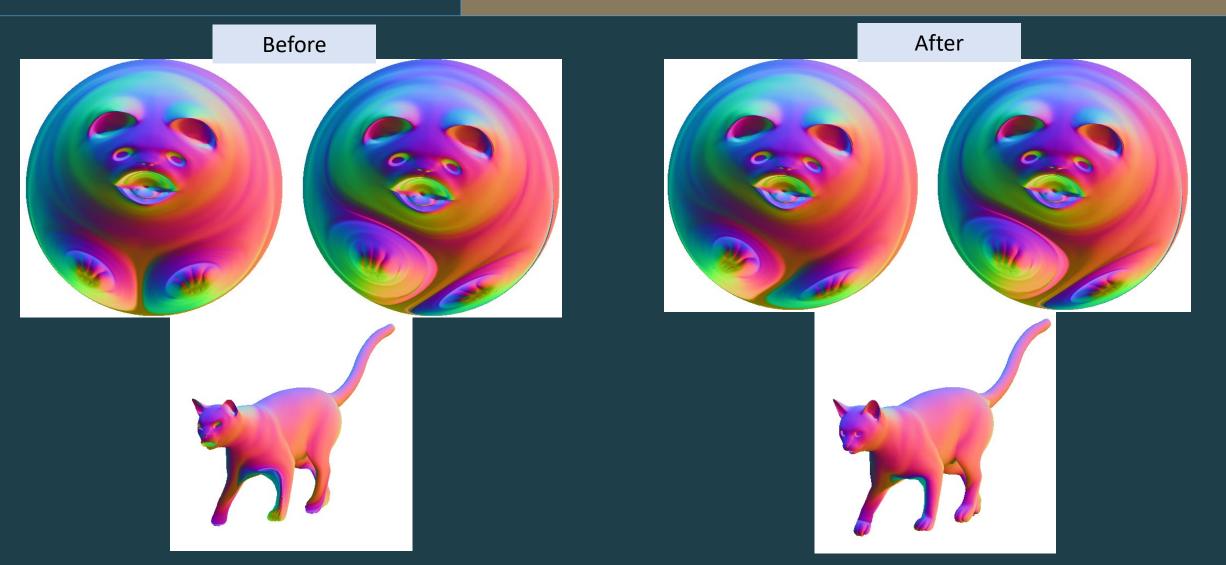
w/o Expansion

w Expansion

Step 5 – Surface Optical Flow

- Recall:
 - $E(\vec{v}) = \int_{\mathbb{S}^2} ||\langle \nabla g_1 \circ R(s), \vec{v}(s) \rangle \delta(s)||^2 + ||\langle \nabla g_2(s), \vec{v}(s) \rangle \delta(s)||^2 + \epsilon ||\nabla \vec{v}(s)||^2$
- Signals (g_i) are HKSs at different time steps
 - Isometric invariant
- But: shapes also undergo non-isometric deformation
- Additional constraint:
 - $E(\vec{v}) = \int_{\mathbb{S}^2} \sum_{i=0,1} \| \langle \nabla g_i(s), \vec{v}(s) \rangle \delta(s) \|^2 + \epsilon \| \nabla \vec{v}(s) \|^2 + \gamma \| \nabla \cdot \vec{v}(s) \|^2$
 - (With abuse of notation, we write $\nabla g_1(s) = \nabla g_1 \circ R(s)$)
 - Meaning: Make the vector field preserve the triangle area (as div = 0)

Step 5 – Surface Optical Flow



Step 5 – Sphere Optical Flow

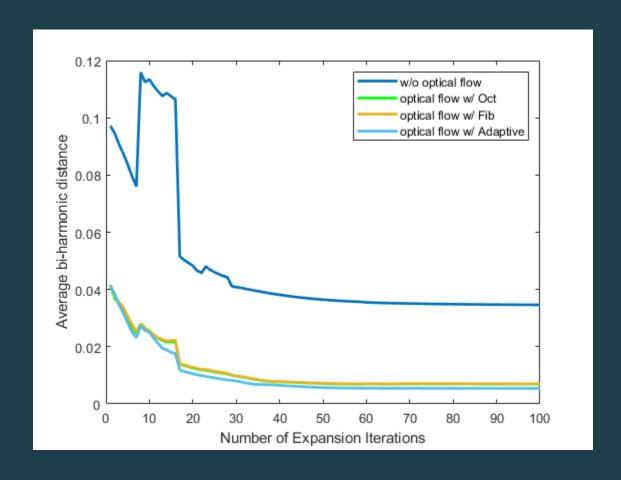
Effect of Divergence Constraint

• Shapes having more non-isometric deformation

Without Constraint

With Constraint

Comparison



Demo and Q&A

Feedback?