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Abstract

Nowadays, orthopedic trauma surgery is performed in a minimal invasive way by us-
ing X-Ray imaging technique with mobile C-arms. In order to improve accuracy and re-
duce radiation dose, numerous solutions were proposed. These solutions usually intro-
duce new hardware into the operation room (OR), at the same time introducing additional
constraints on the surgical workspaces. For example, line-of-sight problem imposed by
optical tracking systems; therefore, they require radical changes to the surgical setup and
workflow. To overcome this limitation, Camera augmented mobile C-arm (CAMC) is pro-
posed, which provides an intuitive overlay of an X-Ray and video images for a robust
guidance solution (accuracy of less than 1 mm) with ideally only one single X-ray image.
CAMC achieves the aforesaid goals with minimal impact on existing setup and workflow.
However, depth information assessment in the OR remains an open topic for computer
scientists.

In this thesis, we integrate a commercially available RGBD camera (e.g. Intel RealSense)
into the C-arm system. After an one-time calibration routine, the depth camera space is
registered with the cone beam computed tomography (CBCT) volume space. A surface
reconstruction technique (e.g. KinectFusion) is used to generate the target surface; while
digital reconstruction radiography (DRR) is used for simulating the X-Ray image at any
desired angles. They are overlaid to provide an intuitive interface for surgical guidance,
similar to CAMC; yet, instead of providing only one static view, multiple views at any
desired angles can be provided. It allows for a mixed reality visualization platform that
can provide depth information intra-operatively.

Experiments are designed to evaluate the accuracy and repeatability of our method. A
pre-clinical study is conducted to compare the proposed system with conventional meth-
ods and CAMC. We conclude the proposed method achieves a reasonable accuracy of 2.58
mm and has clear advantages in terms of time spent, radiation dose and surgical work
load, compared to conventional methods.
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Contents
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(a) (b) (c)

Figure 1.1: Anatomical structure drawing by Leonardo da Vinci (a), modern X-Ray image
(b) and fused visualization of different imaging techniques (PET and CT) (c).
Sources: images are taken from [9, 2, 14].

Before the discovery of X-Ray imaging by Wilhelm Conrad Röntgen in the 19th century,
physicians had long been looking for a deeper understanding of the human body anatomy.
In the 15th century, Leonardo da Vinci pioneeringly studied the human anatomy by draw-
ing and detailing human skeletons, muscles and sinews (Fig. 1.1a), which greatly con-
tributed to the advancement of medical science by revealing the mystery of our anatomy.
The discovery of X-Ray imaging (Fig. 1.1b) transformed conventional procedures by al-
lowing physicians to see-through patient’s anatomy directly without opening the body,
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1 Introduction

thereby transforming the conventional open procedures to minimally invasive procedures.

Nowadays, minimally invasive medical procedures are mainly computer-assisted by
different imaging techniques. A sophisticated way to facilitate physicians to access this
imaging information is by data fusion and visualizing it as intuitively as possible. It helps
physicians to quickly and correctly perceive the information, such as in Fig. 1.1c. In this
case, it fuses the positron emission tomography (PET) and computed tomography (CT)
to allow physicians identify the anatomical structure and tumor tissues at the same time.
In this thesis, we are motivated to integrate a red-green-blue-depth (RGBD) camera for
mobile C-arms and to develop better intra-operative visualization of CT data. We focus
our interests on the application in orthopedic and trauma surgery.

1.1 State of the Art

In orthopedic and trauma surgery, X-ray imaging is frequently used for locating the entry
point and determining the insertion angle, such as percutaneous ilio-sacral and pedicle
screw placements in spine surgeries as illustrated in Fig. 1.2. The task is challenging as 2D
X-Ray images lack depth information for localization in 3D space. It demands the surgeons
to mentally align the surgical tool and patient’s body among X-Ray images at different
perspectives. In order to prevent unnecessary damages to the soft tissues and nervous
system around the vertebra, a considerable number of X-Ray images has to be taken for a
single screw or wire placement. The surgeons may even undergo several failed attempts
before reaching an acceptable placement orientation [24, 29]. Therefore, the procedure
duration is typically long and involves high radiation exposures.
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1.1 State of the Art

(a) (b)

Figure 1.2: In a minimally invasive orthopedic procedure, surgeons are trying to locate the
entry point and determine the insertion angle with the help of X-Ray imaging.
(a) shows the surgeon’s view while (b) shows the X-Ray image. Surgeons are
required to mentally align their view to the X-Ray image.

To address the problem, optical-based image-guided navigation systems are introduced
to the operation room (OR) for tracking surgical tools and the patient, to recover the spatial
relationship between them and the X-Ray images. These systems (e.g. [15, 17, 33]) provide
sub-millimeter accuracy for surgical tool navigations in X-Ray images (Fig. 1.3a). They
essentially replace the current navigation habit that requires a considerable number of X-
Ray images, thus reducing the radiation dose significantly. However, these systems do not
help remarkably shorten operation time. They are outside-in tracking systems that occupy
extra space in the OR, and tracking results are limited by its line-of-sight. The additional
device setup also increases the complexity of the procedure.

An alternative approach is to directly integrates video cameras or optical-based tracking
devices to the mobile C-arms. For instance, Camera augmented mobile C-arm (CAMC) in-
volves a video camera and an X-Ray transparent mirror construction, which are rigidly
mounted on the gantry of C-arms. This design allows the X-Ray imaging and video cam-
era to share the same view by calibration [20]. The X-Ray imaging and video camera views
are calibrated with a phantom consisting of radio-opaque and optical markers (Fig. 1.3b),
so that by registering the markers in both views, their optical centers and image planes
are aligned. This design provides an augmentation of X-Ray images onto a live video as
illustrated in Fig. 1.3c. The system was evaluated and used in orthopedics and trauma
surgeries. [7, 19] concluded that it improves the localization of an incision entry point and
orientation, and further reduces radiation exposures. However, limited by the projection
models of the X-Ray imaging and video camera, the system enforces the C-arm to be in an
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1 Introduction

(a) (b) (c) (d) (e)

Figure 1.3: (a) shows the augmentation of the surgical tools such as drills in the X-Ray im-
ages using outside-in tracking systems. (b) is the bi-planer calibration phantom
for aligning X-Ray imaging and video camera optical centers, whose results al-
lows augmentation of X-Ray images on the live video camera as illustrated in
(c). (d) is another calibration phantom for registering the CBCT volume and
video camera, which allows augmentation of the DRR from CBCT on the live
video camera as shown in (e). Sources: images are taken from [17, 20, 25].

up-side down setting for the sake of aligning the physical models. The mirror construction
also reduces the surgical workspace and the system may not provide sufficient depth infor-
mation in one single 2D-2D augmentation view. [32] extended the design by introducing
a second camera to provide supplementary view which is orthogonal to the CAMC view.
With optical-based tools tracking, it augments the surgical tool in this orthogonal view to
supplement the depth information.

On the other hand, Tracker-on-C integrates the optical-based tracking device into C-
arms [25]. This work steps further from the 2D-2D augmentation to an interactive 2D-3D
augmentation by registering a Cone-beam CT (CBCT) and the tracking device camera.
An hex-face calibration phantom with radio-opaque and optical markers (Fig. 1.3d) is de-
signed and paired-point registrations of markers is performed to recover the projection of
X-Ray images during CBCT scanning relative to the camera origin. Using these calibrated
projections, similar to CAMC, an augmentation of X-Ray images on the live video can
be computed. Since a CBCT volume is acquired, a Digitally Reconstructed Radiographs
(DRR) at a given projection can also be computed. Therefore, the system provides an in-
teractive 2D-3D augmentation view from different projection angles as shown in Fig. 1.3e.
The major drawbacks of this system are the involvement of marker tracking on the sur-
gical sites and the limitation of the augmentation view by the tracking device position,
which results in frequent C-arm re-positioning for obtaining new desired views. Never-
theless, both CamC and Tracker-on-C eliminate the outside-in tracking system, reduce X-
Ray exposures and achieve sub-millimeter accuracy. However, providing sufficient depth
information intuitively in the OR remains a challenge.

In the last decade, with a more mature and commercially available depth sensing tech-
nology, depth cameras such as Kinect, Intel RealSense, PrimeSense etc. are studied so as
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1.1 State of the Art

(a) (b) (c) (d)

Figure 1.4: (a) shows the augmentation of X-Ray images with a reconstructed surface. (b)
depicts the calibration phantom for registering depth camera and X-Ray imag-
ing. (c) and (d) show the similar augmentation under different designs in [35]
and [13].
Sources: images are taken from [12, 35, 13]

to resolve the depth perception challenge in clinical applications. The concept of [20, 25]
is extended by integrating RGBD cameras into C-arms such as in [12, 13, 35]. [12] replaced
the video camera of CAMC with a RGBD camera and studied the accuracy of the depth
measurement under the mirror construction design. It was ascertained that the mirror
does not exert a major influence on the depth measurement. Given the calibration result
of the RGB camera and X-Ray imaging system (using the same method as in [20]) and the
calibration result of RGB and depth cameras, the system can compute augmentation of
X-Ray images onto a reconstructed surface from the depth camera (Fig. 1.4a). On the other
hand, [35] proposes to calibrate the attached RGBD camera to 2D X-Ray imaging device
directly without using the mirror construction. A calibration phantom with radio-opaque
and optical markers is designed (Fig. 1.4b) and the calibration is done by computing the
projection of the 3D point cloud of the markers acquired by the depth camera to the corre-
sponding 2D points of the markers on the X-Ray image plane. Similar to [12], an augmen-
tation of X-Ray images onto the reconstructed surface is obtained (Fig. 1.4c). The calibra-
tion method reached an error of 0.54 mm (RMS) ± 1.40 mm. [13] further demonstrated the
feasibility of using multiple depth cameras to achieve the same augmentation with better
depth information (Fig. 1.4d). These works step further from the 2D-2D augmentation to
a 3D-2D argumentation, and attempted to improve depth perception by utilizing 3D re-
constructed surfaces. The main limitation of these works is the nature of 2D projection
of the X-Ray imaging. Although the depth camera provides a 3D reconstructed surface,
the augmentation is physically correct only when the viewpoint is the same as the X-Ray
source.
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1 Introduction

1.2 Problem Statement

For orthopedic and trauma surgery, the ultimate goals are always to shorten the operation
time, reduce the radiation dose, avoid unnecessary tissue damages without altering the
existing procedure. Since the procedure fundamentally relies on X-Ray imaging, the main
difficulty to achieve the aforesaid goals is the depth perception from multiple 2D X-Ray
images. To resolve this challenge, an advanced visualization technique is desired, which
should facilitate surgeons to perceive the depth information in the OR quickly and accu-
rately. An important cue for depth perception in human vision system is motion parallax.
By observing movements in a sequence of 2D images or multiple static 2D images in differ-
ent angles, we can easily distinguish the foreground and background, thereby perceiving
depth information of the observed target. Therefore, providing an interactive visualization
with multiple perspective views is essential for the depth understanding in the OR.

Inspired by the literature, this thesis proposes a system designed to tackle the depth per-
ception challenge by integrating an RGBD camera for C-arms and calibrating the RGBD
camera to the CBCT volumes. It steps further from the 2D-3D or 3D-2D augmentation to
a 3D-3D augmentation. It enables an intuitive 3D visualization with the augmentation of
both physical and anatomical information, and provides multiple arbitrary views simul-
taneously. On top of this, live flying point clouds of the surgical tools or hands are also
augmented in the scene, so surgeons are able to interact with the visualization and quickly
understand the relationship among the tools, the surgical sites and the targets in this 3D
mixed augmented reality.

1.3 Thesis Structure

The thesis is organized as follows: Part I contains Chapter 1 which gives the introduction,
the overall picture of the problem that we are trying to resolve, and the ultimate goal that
we would like to achieve; and Chapter 2 which outlines the theories, tools and techniques
that are involved in the thesis. Part II describes the approach that we propose to resolve the
problem, which is separated into three chapters. Chapter 3 discusses the system design —
the choice of RGBD cameras, the integration to mobile C-arms, and the calibration phan-
tom design. Chapter 4 details the calibration method for the RGBD camera and the CBCT
acquired by the mobile C-arm, and Chapter 5 sketches out a mixed visualization concept
using 3D-3D augmentation provided by the calibration result. Lastly, Part III reports the
experimental assessment results in Chapter 6 and draws a conclusion with a pre-clinical
usability study in Chapter 7.
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2 Background Theory
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In this chapter, we are going to sketch out the background theories that are involved in
this thesis, and acknowledge the tools that we used for the realization and implementation
of these theories.

2.1 Camera Parameter Estimation - Checkerboard Calibration

(a) (b) (c) (d)

Figure 2.1: (a) and (b) are corresponding checkerboard images in RGB and depth camera.
(c) shows the extrinsic calibration results using Matlab calibration toolbox and
(d) illustrates the color point clouds using the calibration results.

In order to compute the 3D points from depth camera and project the color from RGB cam-
era to depth camera space, we need to calibrate the RGBD camera to recover its intrinsic
and extrinsic parameters. A standard checkerboard stereo camera calibration described
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2 Background Theory

in [38] using the checkerboard shown in Fig. 2.1 is performed on the RGB and depth cam-
eras. The RGB and depth cameras are modeled as pin-hole cameras and their intrinsic
parameters KRGB , KDepth and extrinsic parameters DepthTRGB are expressed as follow:

KRGB =







fRGB
x 0 cRGB

x

0 fRGB
y cRGB

y

0 0 1





 , KDepth =







fDepth
x 0 cDepth

x

0 fDepth
y cDepth

y

0 0 1





 (2.1)

where fRGB
x , fRGB

y and fDepth
x , fDpeth

y are the focus lengths of the RGB and depth camera;
cRGB
x , cRGB

y and cDepth
x , cDepth

y are the principal points of the RGB and depth camera.

RGBTDepth =

ñ

RGBRDepth
RGBtDepth

0 1

ô

(2.2)

where RGBRDepth and RGBtDepth are the rotation matrix and translation vector from depth
camera to RGB camera.

A sequence of corresponding RGB and depth camera images are obtained by plac-
ing the checkerboard at different poses within the shared view (an example is shown in
Fig. 2.1a and 2.1b). The parameters are estimated by using Matlab calibration toolbox
(Fig. 2.1c). With the calibration results, the depth measurement from the depth camera
and the color information from RGB camera, a set of colored point clouds P := {pi =
[xi yi zi ri gi bi]

T |i = 0...N}, where N is the total number of points, can be computed as
follow:
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(2.3)
and






ri
gi
bi





 =

{

RGB value at (cui, cvi) if (cui, cvi) within field of view of RGB camera

[0 0 0 ]T Otherwise
(2.4)

where ui, vi are the pixel coordinates of the depth camera space, di is the depth measure-
ment at ui, vi; xi, yi, zi are the 3D coordinate in depth camera space computed from the
depth measurement and its intrinsic parameters; cui, cvi are the projected pixel coordinate
on the RGB image plane using the intrinsic and extrinsic parameters, and ri, gi, bi are the
corresponding color information. ri, gi, bi are set to white if the projected point cui, cvi are
out of view of the RGB camera. An example of a computed colored point cloud is shown
in Fig. 2.1d.
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2.2 Surface Reconstruction Technique - KinectFusion

2.2 Surface Reconstruction Technique - KinectFusion

(a) (b)

Figure 2.2: (a) briefly describes the KinectFusion reconstruction algorithm and a recon-
struction result is shown in (b).

Given a live sequence of 3D point clouds computed from the depth camera, real-time si-
multaneous localization and mapping (SLAM) can be performed and used to reconstruct
an object surface. KinectFusion is an remarkable tool to reconstruct object surface in this
manner [21]. KinectFuson utilizes bilateral filtering to remove noise in the depth measure-
ments, and a course-to-fine iterative closest points (ICP) algorithm to estimate the trans-
formation between two consecutive frames. This thesis adapted the open source version
of KinectFusion1 to reconstruct colored object surfaces.

After KinectFusion is initialized, a 3D global volume in truncated signed distance func-
tion (TSDF) is created in the global coordinate. For each consecutive frame, it is filtered
by bilateral filtering for noise removal, and downsampled with different scale. At each
scale level, a measured point cloud is computed from the downsampled frame. Using the
current tracking result, the 3D global volume is transformed to a predicted camera coor-
dinate and then projected to the image plane to obtain a predicted point cloud. Now, in
the camera coordinate, potential corresponding points are found by comparing the differ-
ence of the surface normal and distance between the measured and predicted point clouds.
Given these corresponding points, ICP is performed to estimate the new transformation,
which also gives a new prediction. This process is iteratively applied at each scale level
and continue in a course-to-fine manner, until it is converged. At last, the TSDF volume is
updated by merging the current point cloud using the final tracking result. The reconstruc-
tion algorithm is summarized in Fig. 2.2a and an example of the reconstructed surface is
shown in Fig. 2.2b. KinectFusion allows us to reconstruct the surface and perform tracking
with depth camera in real time. For more mathematical and technical details, readers are
referred to [21].

1open source code is available at https://github.com/Nerei/kinfu_remake
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2 Background Theory

2.3 3D Features - Fast Point Feature Histogram (FPFH)

(a) (b)

Figure 2.3: (a) and (b) are the graphical relationship of point feature histogram and fast
point feature histogram. Sources: images are taken from [23, 22]

In classic computer vision, we typically extract features of an object of interest from images
and match them so that we can register the object in different images. It can be used for
tracking, object recognition, image registration, picture stitching etc. When coming to the
3D world, we would also like to extract 3D features from different measured point clouds,
such that we can also do tracking, registration, stitching etc.. [34] proposed surflet-pair-
relation histograms which extracts 4D geometric features from all surflet pairs of a point
cloud and their normals into a histogram. This feature is a generalization of curvature and
is invariant to rotation and translation. It is robust and able to distinguish arbitrary shapes
in 3D. [27] extended this work for point cloud density invariance. And in this thesis, we
used the speed-up version Fast Point Feature Histogram to describe our 3D features [28],
which is implemented in the PCL library [26].

Given a sets of points P := {pi} and a defined radius r, for each point pi, we can define a
neighborhood Ωi centered at point pi with radius r. For all pairs {pj , pk} ∈ Ωi, a point fea-
ture histogram (PFH) can be computed with the 4D geometric features φjk defined in [34]:

PFHi = H ({φjk}) (2.5)

where H(.) is an operator to put the features into histogram, and φjk is a set of features
of angular variations computed from the two points pi, pj and their normals. Fast point
feature histogram (FPFH) is then computed as a weighted PFH in Ωi, where wj is the
Euclidean distance between point pairs {pi, pj}:

FPFHi = PFHi +
1

k

∑

j∈Ωi

1

wj
PFHj (2.6)
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2.4 3D Point Cloud Registration - Iterative Closest Points (ICP)

FPFH can be computed in O(nk2) time, where n is the total number of points and k is the
total number of neighbor; and provide robust 3D features for template matching, tracking,
3D-3D point cloud registration etc.. An graphical illustrations of PFH and FPFH are shown
in Fig. 2.3.

2.4 3D Point Cloud Registration - Iterative Closest Points (ICP)

Figure 2.4: Summary of ICP algorithm

Iterative closest points algorithm is typically used for registering two sets of points. The
algorithm estimates the transformation between two sets of points by minimizing a cost
function in a least square sense. The main drawback of the algorithm is the potential trap
of a local minimum. Therefore, it should be used with caution that either the optimization
is guaranteed to be strictly convex or there is a good initialization that ensures the expected
solution in the initial neighborhood. In this thesis, we perform ICP with a good initializa-
tion and with the cost function below using the PCL interactive ICP implementation [26].

Given two sets of points Ptarget := {ptargeti } and P := {pi}, we try to obtain the transfor-
mation Tmin such that:

Tmin = min
T,S

∑

(i,j)∈S

‖ptargeti −Tpj‖
2
2 (2.7)

where S := {(i, j)|j = mink ‖p
target
i − Tpk‖

2
2} is the set containing the corresponding in-

dices between the target and the current point clouds which is found by treating the closest
point as the correspondence. The ICP algorithm is summarized in Fig. 2.4.

2.5 Synthetic X-Ray - Digitally Reconstructed Radiograph (DRR)

Digitally reconstructed radiograph (DRR) treats a CBCT volume as an attenuation model
to generate synthetic X-Ray images at a given X-Ray source position. Current DRR ren-
dering utilizes modern computer graphics rendering technique with GPU acceleration —
direct volume rendering with ray casting passing through the attenuation model. Multi-
ple transfer functions can be defined so that particular ranges of attenuation values can
be emphasized with different colors and opacities. Some typical GPU-accelerated DRR
rendering pipelines could be found in [1, 8]. In this thesis, we adapted the direct volume
rendering implemented in ImFusion SDK2 with customized transfer function for synthetic

2ImFusion SDK http://imfusion-tech.com/8-english/23-imfusion-sdk
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2 Background Theory

(a) (b) (c) (d)

Figure 2.5: Examples of DRR generated synthetic X-Ray images of a tube phantom

X-Ray image generation. Examples of synthetic X-Ray with different transfer functions are
illustrated in Fig. 2.5.

2.6 Depth Perception - Occlusion and Motion Parallax

(a) (b)

Figure 2.6: (a) and (b) show the overlay of the bone model and body surface with and
without using the depth cue - occlusion Sources: images are taken from [4]

In order to enhance the depth perception in the visualization, two main depth perception
cues are applied — occlusion and motion parallax [5]. We would like to overlay the object
surface with the synthetic X-Ray image, which raises a problem of how users can perceive
the correct order of the objects in the overlay. We need to ensure the object surface in the
overlay is preserved perceptually on the top of the synthetic X-Ray image. In a word,
we need to avoid the effect of floating object as shown in Fig. 2.6a. To achieve this, we
apply the similar technique as in [4], a virtual window is created and synthetic X-Ray
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image is only overlaid within the window such that the occlusion of the object surface
outside the window helps users perceive the correct order within the overlay region. An
example of the overlay with and without the window are shown in Fig. 2.6a and 2.6b. More
sophisticated perceptual visualization technique such as contextual anatomic mimesis [3],
which uses the curvature, angle of incidence factor and fade out windows can be used to
further improve the overlay. In this thesis, we applied the occlusion depth cue with fade
out windows.

(a) (b)

Figure 2.7: (a) and (b) demonstrates that multiple views help us to perceive the target
depth.

On the other hand, even though depth order can be perceived better with occlusion,
it is still hard to perceive the distance between two objects in a single 2D image. For
example, Fig. 2.7a shows an example of 2D synthetic X-Ray generated by DRR. It consists
of two stones placed next to each other. It is hard to tell how far the two stones are apart.
To provide better depth understanding in this case, motion parallax is applied. Multiple
simultaneous views at different view angles show different occlusion levels of the two
objects. Our vision system can interpret and estimate the distance between the objects
from them. For instance, if we look at both Fig. 2.7a and 2.7b together, we are able to
understand which one is foreground and which one is background, and can imagine a
motion parallax as if we are changing our view from left to right, and hence estimate the
distance between them.

Even better and more intuitive, when we are allowed to interactively change the view
by rotating it and observe a sequence of dynamic motion changes, as if we are rotating
a transparent container and estimating the object depth inside. In this thesis, the system
proposed consists of multiple interactive views with fade out windows overlaid, which
aims to provide an intuitive visualization of CT and patient data for improving depth
understanding in the OR.
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2.7 Error Measurement - Target Registration Error (TRE)

There are different error measurements for calibration accuracy evaluation such as fidu-
cial localization error (FLE), fiducial registration error (FRE) and target registration error
(TRE) proposed by [16]. [18] did a mathematical analysis and concluded that different er-
ror measurement algorithms in fact converge to a general maximum likelihood solution
and also demonstrated experimentally that TRE can predict FLE even in the presence of
anisotropic noise. In this thesis, we chose to use TRE for our error measurement. We
positioned our landmarks in a way that is as much non-collinear, non-coplanar and uni-
formly distributed as possible, so that a small rotational and translational error is reflected
in the TRE measurement. Provided the calibration result, we have the transformation
T between two spaces. Given a set of corresponding landmark positions in both spaces
L := {(mtarget

i ,mi)|i = 0...n} where n is the total number of landmarks, the TRE is com-
puted as follow:

TRE =
1

n

∑

(mtarget

i
,mi)∈L

‖mtarget
i −Tmi‖

2
2 (2.8)

16



Part II: System Design, Calibration
Method and Mixed Reality

Visualization





3 System Design

Contents

3.1 Depth Camera Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Calibration Phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Proposed Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

In the following sections, we describe the components of the system design. We briefly
compare different types of depth cameras regarding their advantages and disadvantages,
depict the system setup and discuss the calibration phantom design for the depth camera
integration for C-arms.

3.1 Depth Camera Comparison

A verity of methods for depth measurement exists, such as depth-from-focus, depth-from-
motion, depth-from-shape, stereo vision, structured light and time-of-flight (ToF) cam-
eras [30]. The first three, as their names suggested, are based on estimation from the
changes in focus, motion, and shape, which in general uses multiple consecutive images
to find their correspondences and thereby estimate the depth. It is computationally expen-
sive and may produce ambiguous results when there are no good corresponding features
in the moving image sequences. On the other hand, the last three uses triangulation on
stereo images, deformation of structured patterns and modulated time-of-flight measure-
ment to estimate depth information. The data is acquired in a single time frame and they
generally give more precise information.

As discussed in [11], stereo vision requires textured surfaces to find correspondence in
stereo images in order to generate an accurate triangulation result. Its depth measurement
effective range depends on the baseline of the stereo camera. The wider the baseline is, the
deeper the depth information can be measured. Since in clinical application the observ-
able surfaces are frequently untextured and the working spaces are limited, stereo vision
is not suitable for acquiring depth information. Conversely, both structured light and ToF
cameras do not require textured surfaces for depth measurement. Both techniques utilize
infrared for fast depth measurement. ToF camera shoots out modulated infrared and mea-
sures the flight time of the infrared light traveling to the surface and bouncing back to
the camera and hence calculate the traveled distance as depth measurement. On the other
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3 System Design

hand, a structured light camera projects a structured infrared pattern onto the surface and
observes the deformation of the pattern. Based on the deformation, the depth informa-
tion by interpolating the curvature changes is recovered. Since both cameras are using
infrared, if there are additional infrared sources, they suffer from interference. Due to the
wave modulation, ToF is less susceptible to interference effect. However, ToF cameras un-
derlie several limitations: Since ToF camera directly measures infrared intensity, the mea-
surement becomes materials dependent. Materials having different infrared reflectance
therefore yield to different depth measurements. In addition, the infrared sensors typi-
cally require around 20 minutes warm-up time for a stable measurement. Furthermore,
depth distortion (namely Wiggling effect) occurs in ToF cameras. An additional depth
distortion rectification is required to obtain accurate depth information.

On the contrary, depth measurement by structured light camera is not material depen-
dent and does not require warm-up time nor depth distortion rectification. It can provide
relatively reliable depth information. Its limitation is mainly the interference by other
infrared sources, which also hinders the use of multiple structured light cameras. Nev-
ertheless, among the aforementioned depth measurement techniques, structured light is
more suitable in clinical application. In this thesis, we chose to use Intel RealSense F200
close range structured light camera for the integration. We also compared the result with
Microsoft Kinect 360 structured light camera.

3.2 System Setup

A close-range structured light depth camera, such as Intel RealSense F200, is rigidly mounted
next to the detector of a C-arm as illustrated in Fig. 3.1a. The camera is positioned such that
its view covers the whole CBCT volume. With this setup, the transformation between the
CBCT volume and the depth camera center can be modeled as a rigid body transformation
DepthTCBCT in SE(3).

DepthTCBCT =

ñ

DepthRCBCT
DepthtCBCT

0 1

ô

(3.1)

We designed a calibration phantom as described in the following section, and proposed
to obtain the surface point clouds of this phantom in both CBCT space (PCBCT ) and depth
camera space (PDepth) to perform point clouds registration, so as to recover DepthTCBCT ,
which will be discussed in Chapter 4.
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3.3 Calibration Phantom

(a) (b)

Figure 3.1: (a) depicts the system setup of the depth camera integration and the transfor-
mation relationship and (b) shows the calibration phantom

3.3 Calibration Phantom

The phantom design is shown in Fig. 3.1b. It is composed of three pipes and a cylindrical
foam base. Theoretically, any object, whose surface is distinguishably visible in CBCT
volume scan and clearly visible in infrared images for surface reconstruction, is suitable
for the calibration. Therefore, we chose the materials such that their surfaces are visible
in both the CBCT and in depth camera. The pipes have higher radiation absorption than
the foam base, which allows us to easily segment it out to obtain their surfaces in CBCT
volume. In addition, the round shape provided by the pipes is good for the depth camera
measurement since it lowers the corner reflection effect of the infrared; meanwhile the
foam base acts as additional feature for depth camera tracking and surface reconstruction.

The phantom is constructed with special geometric properties for the sake of avoiding
ambiguity. The pipes have different lengths and are positioned at different heights and
orientations, such that it provides an unique 3D shape profile. The unique shape is es-
sential and ensures the uniqueness of the rigid transformation to be recovered from CBCT
volume and depth camera. The design aims to provide stable and reliable surface point
clouds acquired in both CBCT and depth camera space.
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3.4 Proposed Workflow

Figure 3.2: Workflow with using new system design

With this system design, the camera is rigidly mounted on the C-arm, thereby it only
requires an one-time calibration to recover the spatial relationship between the CBCT vol-
ume and the camera. Fig. 3.2 describes the proposed workflow. Before the procedure
starts, patient and C-arm are positioned and pre-operative CBCT data and patient surface
are acquired. Then, using the one-time system calibration result, the system can provide
mixed reality visualization for surgeons to locate the entry point, ideally without taking
any other X-Ray images. The one-time calibration will be described in Chapter 4 while the
mixed reality visualization will be illustrated in Chapter 5.
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This chapter explains the one-time calibration method in Fig.3.2. The RGBD camera
is attached on the C-arm as described in Section 3.2 is calibrated by using stereo cam-
era checkerboard calibration described in Section 2.1. Therefore, the intrinsic parameters
KRGB , KDepth and the extrinsic parameters DepthTRGB of the camera are known. Hence,
we can obtain the colored point clouds P from the camera with Eq. 2.3 and Eq. 2.4. In the
following sections explain how to utilize the phantom discussed in Section 3.3 to calibrate
the camera to the CBCT volume space. The calibration method is divided into three phases
— data acquisition in both CBCT and camera spaces (Section 4.1), point clouds extraction
(Section 4.2), and 3D-3D point clouds registration (Section 4.3).

4.1 Data Acquisition

The calibration phantom (Fig. 3.1b) is positioned with the laser guidance of C-arm, such
that all the pipes are visible in the CBCT and the depth camera view. A CBCT volume
scan is performed with simultaneous surface reconstruction by KinectFusion. After the
scanning, we obtain the calibration phantom data in two different modalities — CBCT
and surface reconstruction.
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4 Calibration Method

4.1.1 CBCT Volume Scan

(a) (b)

Figure 4.1: (a) The mobile C-arm device, and (b) the CBCT scanning result visualized in
ImFusion SDK.

A SIEMENS ARCADIS Orbic 3D mobile C-arm (Fig. 4.1a) is used to perform the CBCT
volume scan. The CBCT scan involves 100 X-Ray images spread over 190 degree projection
angles. The resulting volume size is 12cm3 and the volume is stored in DICOM format.
Fig. 4.1b shows the CBCT volume scan result of the calibration phantom.

4.1.2 Surface Reconstruction with KinectFusion

(a) (b)

Figure 4.2: (a) and (b) show the surfaces at different angels reconstructed by KinectFusion.
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4.2 Point Clouds Extraction

During the scanning, simultaneous surface reconstruction is performed using KinectFu-
sion discussed in Section 2.2. We modified the KinectFusion to suit our application. We
defined the volume box to 30cm3, which is large enough to cover the CBCT volume and
also the foam base, which provide enough depth information for reliable tracking. KRGB ,
KDepth and DepthTRGB are used to compute and merge the colored point clouds at each
tracked position. Reconstructed calibration phantom surfaces are shown in Fig. 4.2 and it
is stored in truncated signed distance function (TSDF) in the software memory.

4.2 Point Clouds Extraction

After acquiring the raw data — CBCT in DICOM format and TSDF in the software memory
as mentioned in previous section, we can extract the surface point clouds of the pipes,
which are in common in both spaces and therefore can be used for registration.

4.2.1 Point Clouds Extraction from CBCT Volume

(a) Simple thresholded
CBCT Volume

(b) Extracted Surface
Mesh

(c) Further threshold-
ing by ambient
occlusion

(d) Extracted Point
Clouds

Figure 4.3: Point Clouds Extraction from CBCT Volume.

Point clouds extraction from CBCT volume is performed in 4 steps. First, by design, the
X-Ray attenuation index of the pipes are higher than other materials in use, therefore, a
simple thresholding can be performed to segment the pipes as shown in Fig. 4.3a. Next,
based on the segmentation result, a greedy triangulation algorithm [6] is used to generate
the surface mesh of the pipes (Fig. 4.3b). After that, it is further thresholded based on the
ambient occlusion values assigned to each vertex of the mesh grid so as to eliminate the
pipe’s inner surface (Fig. 4.3c). The last step is to extract all the vertices to produce the
resulting surface point clouds as shown in Fig. 4.3d. The extracted point cloud PCBCT

Raw will
be further processed to eliminate the outliers as much as possible.

25
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4.2.2 Point Clouds Extraction from Reconstructed Surface

(a) TSDF rendering of recon-
structed surface

(b) Extracted Colored Point
Clouds

(c) Extracted Point Clouds

Figure 4.4: Point Clouds Extraction from Reconstructed Surface.

On the other hand, since the surface reconstruction is stored in TSDF, it can also be dis-
cretized and be used to generate point cloud representation of the surface. An example
of extracted point cloud with and without colors is shown in Fig. 4.4a and Fig. 4.4c. The
extracted point cloud PDepth

Raw will be further processed to extract the pipes that we are
interested in, for the registration.

4.2.3 Data Pre-processing

As shown in Fig. 4.3d and Fig. 4.4c, the raw point clouds PCBCT
Raw and PDepth

Raw contain out-
liers other than the pipes that we are interested in. One may manually select the pipes
from the raw point clouds. Another automated method to extract the pipes from the raw
point clouds is by cylinder fitting. As by design, we know the diameters and lengths of
the pipes, we can perform least square cylinder filling for the three pipes.

Given a radius r and a length l of a cylinder, we can fit the cylinder in our raw point
clouds by minimizing the residual function R(.) with M-estimator SAmple and Consensus
(MSAC) [31]:

E(c,u) = min
c,u∈R3

∑

p∈Sj ,
|u·(pi−c)|≤l/2

R(p, c,u)2 (4.1)

where c,u ∈ R
3 are the center and the orientation of the principle axis of the cylinder,

Sj is the sampling set of the point cloud (PCBCT
Raw , PDepth

Raw ) at the j-th MSAC iterations,
and R(p, c,u) is the residual function which measures the distance of a point p from the
cylinder centered at c with orientation u, defined as below, where I is the identity matrix
in R

3:

R(p, c,u)2 = (p− c)⊺(I − uu⊺)(p− c)− r2 (4.2)
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4.3 Point Clouds to Point Clouds Registration

(a) Final Extracted Point Clouds from CBCT
Volume

(b) Final Extracted Point Clouds from Re-
constructed Surface

Figure 4.5: Final Extracted Point Clouds from CBCT and depth camera spaces.

After fitting the cylinders in PCBCT
Raw and PDepth

Raw , we can obtain the surface point cloud
representations of the pipes in CBCT and depth camera spaces, denoted by PCBCT and
PDepth and illustrated in Fig. 4.5, by extracting the fitted model’s neighborhood with a
distance d. i.e. Given a fitted cylinder model parameterized by c and u, for a given point
cloud P , we can extract the neighborhood P(d):

P(d) = {p ∈ P|R(p, c,u) < d} (4.3)

The cylinder fitting can be done in MatLab. PCBCT and PDepth are thus the concatena-
tion of their three fitted cylinder models’ neighborhoods. They will then be used for 3D-3D
point cloud registration as mentioned in the next section.

4.3 Point Clouds to Point Clouds Registration

To register PCBCT and PDepth and to obtain the transformation from CBCT volume space
to depth camera space DepthTCBCT , we propose to use ICP described in Section 2.4, with
a good initial guess obtained by SAmple Consensus Initial Alignment (SAC-IA) with 3D
features as described in Section 2.3.
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4.3.1 FPFH Initialization

(a) Two point clouds before
alignment

(b) Two point clouds are
initially aligned by
SAC-IA with FPFH

(c) Two point clouds are regis-
tered by ICP

Figure 4.6: Two point clouds are registered using SAC-IA with FPFH as initialization and
ICP as refinement.

Given PCBCT and PDepth, we can compute its 3D features FPFHCBCT and FPFHDepth by
Eq. 2.5 and Eq. 2.6. Using SAC-IA to perform iterative alignment between two point clouds
gives us an initial estimation DepthTinit

CBCT of the transformation from CBCT to depth cam-
era. The result of the initial estimation is illustrated in Fig. 4.6b. Since the modalities are
fundamentally different, the point cloud density, distribution and geometry of PCBCT and
PDepth are different. It is challenging to register across different modalities. Nevertheless,
using SAC-IA with FPFH features gives a good initial alignment with suitable parameter
settings. Its result is then used as an initial guess for ICP for estimation refinement.

4.3.2 ICP Refinement

With a good initial guess DepthTinit
CBCT , the result can be improved by using ICP where

the local minimal is generally the expected global solution. The final registration result
(Fig. 4.6c) is thus obtained by:

DepthTCBCT = min
T,S

∑

(i,j)∈S

‖pDepth
i −TpCBCT

j ‖22 (4.4)

DepthTCBCT is fixed once it is recovered and therefore can be used for intra-operative
visualization between CBCT and depth camera data as described in the next chapter.
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5.1 Intra-operative Visualization

This chapter describes the intra-operative visualization method in Fig.3.2. By the method
described in Chapter 4, we recovered the transformation between CBCT and depth camera
space DepthTCBCT , which is fixed as the camera is rigidly mounted and is barely movable.
After the patient data acquisition as described in Fig.3.2, we also have the reconstructed pa-
tient surface and corresponding CBCT volume data. Therefore, we can apply DepthTCBCT

to overlay the surface and CBCT data for a better fused data visualization. Certain depth
cues as discussed in Section 2.6 are applied to provide better depth perception, and DRR
as described in Section 2.5 is used for generating synthetic X-Ray image from CBCT vol-
ume at any desired angle. All together, they provide a mixed reality visualization which
aims to speed up the operation time, reduce radiation dose and make the entry point lo-
calization task easier. The components of the visualization are described in the following
subsections.

5.1.1 Dynamic DRR and Fade Out Windows

When overlaying/blending two objects, it is important to preserve their depth ordering.
Otherwise, the resulting image will lead to depth confusion (e.g. the floating object on
surface as illustrated in Fig. 2.6a). For a better depth perceptual visualization, we use DRR
to generate synthetic X-Ray images with customizable transfer function for emphasizing
the anatomy of interest and a fade out window to include occlusion effect between two
objects which help in depth understanding.
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(a) (b) (c)

Figure 5.1: Examples of synthetic X-Ray with different emphasis.

Fig. 5.1 shows DRR rendering with different transfer functions. Fig 5.1c demonstrates
the feasibility to color different anatomy using DRR rendering technique, which makes the
visualization highlight the important anatomy structures.

(a) (b) (c)

Figure 5.2: Examples of overlay using fade out windows.

Fig. 5.2a shows the rendering of the reconstructed surface, Fig. 5.2b and Fig. 5.2c demon-
strates the effect of overlay with and without fade out windows. The fade out window
helps the overlay better preserve the depth order between the surface and the DRR.
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5.1.2 Multiple Views with Desired Angles

Figure 5.3: Example of Multiple Views of Mixed Reality Visualization - overlaying of CBCT
volume and reconstructed surface with fade out windows and live flying point
clouds for user interaction.

Another depth cue to improve depth perception visualization is motion parallax as men-
tioned in Section 2.6. We achieve this by providing multiple interactive views as illustrated
in Fig. 5.3. The view angles are changeable with the mouse so that surgeons can change
between multiple viewing angles.

5.1.3 Live Flying Point Clouds

Figure 5.4: Example of Multiple Views of Mixed Reality Visualization - overlaying of CBCT
volume and reconstructed surface with fade out windows and live flying point
clouds for user interaction.
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The last component of the visualization is live flying point clouds. Since the camera at-
tached is calibrated to the C-arm and thus the visualization space, the live RGBD informa-
tion can be utilized to generate live flying point clouds of the moving objects in the scene.
To achieve this, a simple background subtraction is performed by subtracting a reference
frame which is recorded at the beginning of the visualization. Combining all components,
the system can provide a mixed visualization as shown in Fig. 5.4.

5.2 Applications

The system enables a real-time visualization of flying point clouds of the hands and/or
surgical tools with overlaid on the patient surface and the DRR generated from CBCT.
It is useful for orthopedic interventions such as guide wire placement and shrapnel re-
moval. An illustration of using the system for guide wire placement and shrapnel removal
is shown in Fig. 5.5 and Fig. 5.6 below.

(a) (b)

Figure 5.5: Demonstration of guide wire application.

(a) (b)

Figure 5.6: Demonstration of shrapnel removal application.
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Experiments are designed and conducted to assess the repeatability, accuracy and influ-
ence of noise, point cloud density, and choice of phantom. In this chapter, the experimental
setup and results are discussed.

6.1 Repeatability Assessment

(a) Pose 1 (b) Pose 2 (c) Pose 3 (d) Pose 4 (e) Pose 5

Figure 6.1: Different poses for repeatablility test.

The calibration phantom in 3.1b is used in the repeatability test. The phantom is placed
at different poses as shown in Fig.6.1, where the pipes are visible by both CBCT scan and
RGBD camera. This gives 5 calibration results. The calibration results in terms of rotation
Euler angles α, β, and γ, and the translation component x, y and z, and their standard
deviation are shown in Table 6.1.

The results show the calibration result only has small deviation (< 1 mm) along x, y, and
z axis and also small deviation in the rotation Euler angle α, β, and γ, which means the
calibration method is repeatable for the phantom and the camera.
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Table 6.1: The calibration results of the repeatability test in term of Euler angles α, β, γ of
DepthRCBCT , the x, y, z components of DepthtCBCT , and ‖DepthtCBCT ‖2, of the
calibration results DepthTCBCT . The last row is their standard deviation (SD).

α (rad) β (rad) γ (rad) x (mm) y (mm) z (mm) ‖DepthtCBCT ‖2

Pose 1 3.1125 -0.0538 0.9931 -21.9796 -52.9218 391.9107 396.0780
Pose 2 3.1095 -0.0601 1.0055 -20.7848 -52.5036 390.8201 394.8785
Pose 3 3.1089 -0.0696 0.9802 -19.4545 -52.1404 390.6211 394.5655
Pose 4 3.1050 -0.0588 0.9860 -20.6831 -52.4334 392.4686 396.4952
Pose 5 3.1172 -0.0633 0.9614 -20.6490 -52.6556 390.8562 394.9273

SD 0.0045 0.0059 0.0163 0.8942 0.2877 0.8093 0.8442

6.2 Accuracy Assessment

(a) TRE test phantom (b) CBCT volume scan (c) Surface reconstruc-
tion

Figure 6.2: Accuarcy test phantom, and its CBCT scan and surface reconstruction.

Next, we would like to assess the accuracy of the calibration method. Given the reasons
stated in Section 2.7, we use TRE to measure the accuracy. An accuracy test phantom is
designed with radio-opaque and optical landmarks which are uniformly, non-coplanarly
and non-colinearly distributed. There are 8 landmarks in total. We position the phantom
differently three times and acquired the CBCT volume scan surface reconstruction of it.
The landmarks in both spaces are then manually extracted and Eq. 2.8 is used to compute
the TRE. The landmark positions of the three tests and the TRE are shown in Table 6.2,
Table 6.3 and Table 6.4.
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6.2 Accuracy Assessment

Table 6.2: TRE Test 1: The positions of the landmarks x, y, and z, and their differences
‖.‖2 are shown. The last row shows the TRE shown as δx, δy, δz, and ‖δ‖2 in
Euclidean distances (mean ± standard deviation).

Test 1 x y z ‖.‖2

Landmark 1 (CBCT) 50.7500 -41.2500 -5.3274 65.6164
Landmark 1 (Depth) 52.3190 -41.5090 -5.6389 67.0229
Landmark 1 (‖δ‖2) 1.5690 0.2590 0.3115 1.4066

Landmark 2 (CBCT) 28.2500 -40.4429 31.2500 58.3974
Landmark 2 (Depth) 30.2690 -37.8000 32.9990 58.6002
Landmark 2 (‖δ‖2) 2.0190 2.6429 1.7490 0.2029

Landmark 3 (CBCT) 21.2500 -35.2500 -5.6019 41.5392
Landmark 3 (Depth) 22.0490 -37.5730 -6.6189 44.0647
Landmark 3 (‖δ‖2) 0.7990 2.3230 1.0170 2.5255

Landmark 4 (CBCT) 8.2500 -35.7500 -16.5877 40.2651
Landmark 4 (Depth) 8.7223 -36.8970 -17.1460 41.6107
Landmark 4 (‖δ‖2) 0.4723 1.1470 0.5583 1.3456

Landmark 5 (CBCT) -12.2500 -26.0343 -56.2500 63.1816
Landmark 5 (Depth) -13.8740 -27.1660 -57.0170 64.6639
Landmark 5 (‖δ‖2) 1.6240 1.1317 0.7670 1.4823

Landmark 6 (CBCT) -16.7500 -26.1449 16.2500 35.0454
Landmark 6 (Depth) -17.2130 -22.1760 15.7950 32.2109
Landmark 6 (‖δ‖2) 0.4630 3.9689 0.4550 2.8345

Landmark 7 (CBCT) -29.2500 -21.4330 37.7500 52.3450
Landmark 7 (Depth) -28.4820 -17.5520 37.7030 50.4065
Landmark 7 (‖δ‖2) 0.7680 3.8810 0.0470 1.9385

Landmark 8 (CBCT) -39.2500 -20.7500 -30.0412 53.6060
Landmark 8 (Depth) -41.6030 -20.9480 -32.9870 57.0769
Landmark 8 (‖δ‖2) 2.3530 0.1980 2.9458 3.4709

TRE 1.26 ± 0.73 1.94 ± 1.50 0.98 ± 0.95 2.91 ± 1.10
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Table 6.3: TRE Test 2: The positions of the landmarks x, y, and z, and their differences
‖.‖2 are shown. The last row shows the TRE shown as δx, δy, δz, and ‖δ‖2 in
Euclidean distances (mean ± standard deviation).

Test 2 x y z ‖.‖2

Landmark 1 (CBCT) 1.6569 -41.2500 -53.2500 67.3786
Landmark 1 (Depth) -0.6363 -44.8360 -54.8740 70.8649
Landmark 1 (‖δ‖2) 2.2932 3.5860 1.6240 3.4863

Landmark 2 (CBCT) 36.7500 -41.1212 -30.2500 62.9013
Landmark 2 (Depth) 36.9960 -43.0810 -32.0180 65.1907
Landmark 2 (‖δ‖2) 0.2460 1.9598 1.7680 2.2894

Landmark 3 (CBCT) 0.7500 -36.5727 -23.7500 43.6141
Landmark 3 (Depth) 0.2039 -40.7530 -26.5500 48.6390
Landmark 3 (‖δ‖2) 0.5461 4.1803 2.8000 5.0249

Landmark 4 (CBCT) -10.2500 -36.5208 -10.7500 39.4258
Landmark 4 (Depth) -10.5290 -37.2860 -11.4610 40.4037
Landmark 4 (‖δ‖2) 0.2790 0.7652 0.7110 0.9779

Landmark 5 (CBCT) -49.2500 -23.2500 9.2596 55.2437
Landmark 5 (Depth) -49.0520 -24.7550 8.5544 55.6065
Landmark 5 (‖δ‖2) 0.1980 1.5050 0.7052 0.3628

Landmark 6 (CBCT) 21.7500 -25.9073 15.7500 37.3137
Landmark 6 (Depth) 21.7730 -23.8270 15.5780 35.8394
Landmark 6 (‖δ‖2) 0.0230 2.0803 0.1720 1.4743

Landmark 7 (CBCT) 43.7500 -21.1250 27.2500 55.7036
Landmark 7 (Depth) 45.2180 -18.6510 26.7020 55.7272
Landmark 7 (‖δ‖2) 1.4680 2.4740 0.5480 0.0236

Landmark 8 (CBCT) -25.2500 -20.7500 38.1079 50.2030
Landmark 8 (Depth) -24.5800 -17.6260 37.5080 48.1840
Landmark 8 (‖δ‖2) 0.6700 3.1240 0.5999 2.0189

TRE 0.72 ± 0.78 2.46 ± 1.12 1.12 ± 0.87 2.91 ± 1.37
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6.2 Accuracy Assessment

Table 6.4: TRE Test 3: The positions of the landmarks x, y, and z, and their differences
‖.‖2 are shown. The last row shows the TRE shown as δx, δy, δz, and ‖δ‖2 in
Euclidean distances (mean ± standard deviation).

Test 3 x y z ‖.‖2

Landmark 1 (CBCT) -0.7500 -41.2500 45.0440 61.0826
Landmark 1 (Depth) 0.5919 -39.9840 45.4780 60.5584
Landmark 1 (‖δ‖2) 1.3419 1.2660 0.4340 0.5242

Landmark 2 (CBCT) -35.6489 -40.7500 21.7500 58.3478
Landmark 2 (Depth) -36.0440 -40.4990 22.2150 58.5905
Landmark 2 (‖δ‖2) 0.3951 0.2510 0.4650 0.2427

Landmark 3 (CBCT) 1.2500 -36.2500 14.9365 39.2266
Landmark 3 (Depth) 0.8929 -36.1970 15.4430 39.3638
Landmark 3 (‖δ‖2) 0.3571 0.0530 0.5065 0.1372

Landmark 4 (CBCT) 12.7500 -35.7500 2.5535 38.0414
Landmark 4 (Depth) 11.8150 -36.7850 1.9105 38.6831
Landmark 4 (‖δ‖2) 0.9350 1.0350 0.6430 0.6417

Landmark 5 (CBCT) 51.2500 -26.4935 -17.2500 60.2165
Landmark 5 (Depth) 53.0000 -25.9950 -19.4260 62.1459
Landmark 5 (‖δ‖2) 1.7500 0.4985 2.1760 1.9293

Landmark 6 (CBCT) -20.2500 -26.2500 -23.0600 40.3843
Landmark 6 (Depth) -19.7520 -26.0130 -24.7810 40.9990
Landmark 6 (‖δ‖2) 0.4980 0.2370 1.7210 0.6147

Landmark 7 (CBCT) -41.7500 -21.5209 -35.7500 59.0277
Landmark 7 (Depth) -42.9480 -22.8340 -38.0930 61.7819
Landmark 7 (‖δ‖2) 1.1980 1.3131 2.3430 2.7541

Landmark 8 (CBCT) 27.7500 -21.2500 -45.7412 57.5663
Landmark 8 (Depth) 0.1450 1.1460 2.8748 2.7928
Landmark 8 (‖δ‖2) 0.1450 1.1460 2.8748 2.7928

TRE 0.83 ± 0.57 0.72 ± 0.52 1.40 ± 1.00 1.92 ± 0.98

The average TRE of the three tests shows the calibration method achieved an average ac-
curacy of 2.58 mm. Between each test the phantom is rotated by 90 degrees. The landmarks
are distributed uniformly, non-coplanarly and non-colinearly. It thus gives different dis-
tance between the landmarks and the depth camera in each test, which results in different
errors. The setting that has more landmarks far away from the depth camera introduces
more error. Therefore, the error mainly comes from the depth measurement. In orthopedic
surgery, it is typically required to place a 2 to 7.3 mm wide guide wire or screw into a bone
structure that varies in thickness between 5 mm (vertebra) and 12 mm (superior pubic ra-
mus) in diameters. Therefore, the calibration in general achieve reasonable accuracy for
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this intervention.

6.3 Influence of Noise and Point Cloud Densities

The calibration method involves data acquired from CBCT and surface reconstruction. By
our phantom design, the CBCT data can be segmented with a simple thresholding which
greatly prevents noisy data acquisition from CBCT volume scan; on the other thand, the
surface reconstruction technique KinectFusion utilizes bilateral filtering as preprocessing
step to eliminate noisy depth data. Therefore, the acquired data is in principle less noisy.
Furthermore, the chosen methods SAC-IA with FPFH and ICP are both tolerant to outliers.
As a result, the calibration result is also tolerant to outliers.

Typically, the point clouds acquired from the CBCT volume data and the surface re-
construction is dense, which means that it is computational expensive. Although for a
one-time calibration method, computation efficiency is not a main issue, we conduct a
test on the point cloud densities and see the feasibility of speeding up. The point clouds
PCBCT and PDepth are downsampled using voxelgrid sampling algorithm with different
grid size before performing the calibration. TRE is measured to evaluate the accuracy of
the downsampled calibration results, which is reported in Table 6.5.

Table 6.5: The original data acquired from the CBCT volume and the surface reconstruction
contains 94547 and 25226 points. The TRE for calibrations with downsampled
point clouds are shown with mean ± standard deviation.

Grid Size
(mm)

# of pts
(CBCT)

# of pts
(Depth)

δx δy δz ‖δ‖2

- 94547 25226 0.83 ± 0.57 0.72 ± 0.52 1.40 ± 1.00 1.92 ± 0.98
0.5 51831 21014 0.95 ± 0.46 0.74 ± 0.63 1.58 ± 1.25 2.18 ± 1.12
1.0 18684 16221 0.90 ± 0.59 0.82 ± 0.50 1.52 ± 1.32 2.19 ± 1.08
1.5 9016 8536 0.88 ± 0.52 0.95 ± 0.50 1.35 ± 0.83 2.05 ± 0.62
2.0 5238 5183 0.89 ± 0.79 0.70 ± 0.56 1.37 ± 1.06 1.96 ± 1.13

The results show small variation in the transformation results. Therefore, the method
also achieve reasonable accuracy even though the point clouds are downsampled. How-
ever, when the point cloud density of both data sets is below grid size 2.5 mm (fewer than
3000 points), the initialization with FPFH failed to provide good estimation, and thus the
calibration failed or require manual adjustment for the ICP initialization.

6.4 Influence of Camera and Phantom Choices

The last assessment we conducted is to compare the calibration results from different depth
camera and phantoms. Similarly, we mounted a Microsoft Kinect 360 rigidly onto the C-
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6.4 Influence of Camera and Phantom Choices

arm. It is rigidly mounted on the gantry instead of the detector because of the depth range
limitation, which needs at least 50 cm apart. We perform the same repeatability test as
mentioned in Section 6.1 with the Kinect 360 camera and compare it with the RealSense
F200 camera. The results are summarized in Table 6.6 and Table 6.7.

Table 6.6: The calibration results of the repeatability test in term of Euler angles α, β, γ of
DepthRCBCT , the x, y, z components of DepthtCBCT , and ‖DepthtCBCT ‖2, of the
calibration results DepthTCBCT .

α (rad) β (rad) γ (rad) x (mm) y (mm) z (mm) ‖DepthtCBCT ‖2

Pose 1 -1.5663 -0.3262 1.5603 9.7328 -132.1384 739.4741 751.2504
Pose 2 -1.5634 -0.3233 1.5619 10.0696 -132.4561 739.5164 751.3524
Pose 3 -1.5627 -0.3278 1.5686 9.9723 -130.8103 738.7425 750.3008
Pose 4 -1.5591 -0.3276 1.5666 9.9238 -131.1044 739.1235 750.7266
Pose 5 -1.5540 -0.3217 1.5484 9.2921 -132.2286 739.5430 751.3285

SD 0.0047 0.0027 0.0079 0.3083 0.7380 0.3450 0.4632

Table 6.7: Comparsion between Intel RealSense F200 and Microsoft Kinect 360 - Repeata-
bility Test in standard deviation

α (rad) β (rad) γ (rad) x (mm) y (mm) z (mm) ‖ctCBCT ‖2

F200 0.0045 0.0059 0.0163 0.8942 0.2877 0.8093 0.8442
Kinect 0.0047 0.0027 0.0079 0.3083 0.7380 0.3450 0.4632

The results show that there is little variation between two cameras, which means the
repeatability of the calibration method is independent of the camera choice.

Similarly, the same accuracy test, as mentioned in Section 6.2, is performed with the
Kinect 360 camera. The results are summarized in Table 6.8, Table 6.9, and Table 6.10 and
compared with the RealSense F200’s in Table 6.11.
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Table 6.8: TRE Test 1 (Kinect): The positions of the landmarks x, y, and z, and their differ-
ences ‖.‖2 are shown. The last row shows the TRE shown as δx, δy, δz, and ‖δ‖2
in Euclidean distances (mean ± standard deviation).

Test 1 x y z ‖.‖2

Landmark 1 (CBCT) -0.7500 -38.7500 44.0664 58.6854
Landmark 1 (Depth) -0.9072 -44.4080 35.9020 57.1126
Landmark 1 (‖δ‖2) 0.1572 5.6580 8.1644 1.5728

Landmark 2 (CBCT) -35.2500 -38.7500 21.2868 56.5443
Landmark 2 (Depth) -36.9600 -41.6930 15.6700 57.8783
Landmark 2 (‖δ‖2) 1.7100 2.9430 5.6168 1.3340

Landmark 3 (CBCT) 0.2500 -34.7500 14.9109 37.8148
Landmark 3 (Depth) -0.2805 -40.1340 9.5371 41.2526
Landmark 3 (‖δ‖2) 0.5305 5.3840 5.3738 3.4377

Landmark 4 (CBCT) 10.8294 -36.2500 2.7500 37.9328
Landmark 4 (Depth) 10.1360 -40.1300 -3.3381 41.5247
Landmark 4 (‖δ‖2) 0.6934 3.8800 6.0881 3.5918

Landmark 5 (CBCT) -20.2500 -26.7500 -23.8884 41.1859
Landmark 5 (Depth) -20.4840 -27.6010 -27.8510 44.2390
Landmark 5 (‖δ‖2) 0.2340 0.8510 3.9626 3.0531

Landmark 6 (CBCT) 50.7500 -26.7500 -17.9049 60.0975
Landmark 6 (Depth) 51.7920 -27.3290 -25.2280 63.7631
Landmark 6 (‖δ‖2) 1.0420 0.5790 7.3231 3.6656

Landmark 7 (CBCT) -42.7500 -20.7500 -36.4606 59.8957
Landmark 7 (Depth) -42.6060 -23.1490 -39.2020 62.3534
Landmark 7 (‖δ‖2) 0.1440 2.3990 2.7414 2.4576

Landmark 8 (CBCT) 26.7500 -21.7500 -46.1628 57.6162
Landmark 8 (Depth) 26.6350 -23.0510 -51.7890 62.6328
Landmark 8 (‖δ‖2) 0.1150 1.3010 5.6262 5.0166

TRE 0.57 ± 0.56 2.87 ± 1.97 5.61 ± 1.72 6.54 ± 1.10

42



6.4 Influence of Camera and Phantom Choices

Table 6.9: TRE Test 2 (Kinect): The positions of the landmarks x, y, and z, and their differ-
ences ‖.‖2 are shown. The last row shows the TRE shown as δx, δy, δz, and ‖δ‖2
in Euclidean distances (mean ± standard deviation).

Test 2 x y z ‖.‖2

Landmark 1 (CBCT) 1.7500 -41.7500 -53.2027 67.6510
Landmark 1 (Depth) -0.1362 -44.3050 -58.8210 73.6401
Landmark 1 (‖δ‖2) 1.8862 2.5550 5.6183 5.9891

Landmark 2 (CBCT) 37.7500 -40.7500 -30.0245 63.1435
Landmark 2 (Depth) 36.8100 -44.3810 -38.0310 69.0725
Landmark 2 (‖δ‖2) 0.9400 3.6310 8.0065 5.9290

Landmark 3 (CBCT) 1.8125 -36.2500 -23.2500 43.1035
Landmark 3 (Depth) 0.6876 -41.2130 -29.5180 50.6981
Landmark 3 (‖δ‖2) 1.1248 4.9630 6.2680 7.5946

Landmark 4 (CBCT) -9.2500 -36.2500 -10.3379 38.8136
Landmark 4 (Depth) -9.9854 -38.9670 -17.8820 44.0216
Landmark 4 (‖δ‖2) 0.7354 2.7170 7.5441 5.2080

Landmark 5 (CBCT) -48.5786 -25.2500 10.2500 55.7001
Landmark 5 (Depth) -47.7670 -28.2530 3.3104 55.5957
Landmark 5 (‖δ‖2) 0.8116 3.0030 6.9396 0.1045

Landmark 6 (CBCT) 22.2500 -26.0645 15.7500 37.7158
Landmark 6 (Depth) 21.2420 -29.4880 6.7674 36.9670
Landmark 6 (‖δ‖2) 1.0080 3.4235 8.9826 0.7488

Landmark 7 (CBCT) 44.9395 -21.2500 28.2500 57.1768
Landmark 7 (Depth) 44.4550 -23.6140 19.6380 54.0326
Landmark 7 (‖δ‖2) 0.4845 2.3640 8.6120 3.1442

Landmark 8 (CBCT) -23.8566 -20.2500 38.2500 49.4193
Landmark 8 (Depth) -25.6120 -23.1170 31.7980 46.9200
Landmark 8 (‖δ‖2) 1.7554 2.8670 6.4520 2.4993

TRE 1.09 ± 0.49 3.19 ± 0.83 7.30 ± 1.19 8.11 ± 1.02
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Table 6.10: TRE Test 3 (Kinect): The positions of the landmarks x, y, and z, and their differ-
ences ‖.‖2 are shown. The last row shows the TRE shown as δx, δy, δz, and ‖δ‖2
in Euclidean distances (mean ± standard deviation).

Test 3 x y z ‖.‖2

Landmark 1 (CBCT) 49.7500 -41.6937 -3.7500 65.0191
Landmark 1 (Depth) 51.8570 -45.0490 -12.5240 69.8241
Landmark 1 (‖δ‖2) 2.1070 3.3553 8.7740 4.8050

Landmark 2 (CBCT) 26.2500 -40.4205 31.7500 57.7143
Landmark 2 (Depth) 27.4080 -43.3260 23.4220 56.3643
Landmark 2 (‖δ‖2) 1.1580 2.9055 8.3280 1.3500

Landmark 3 (CBCT) 20.2500 -36.5254 -4.2500 41.9789
Landmark 3 (Depth) 18.6250 -38.8700 -12.7810 44.9569
Landmark 3 (‖δ‖2) 1.6250 2.3446 8.5310 2.9780

Landmark 4 (CBCT) 8.2500 -36.2500 -15.9487 40.4535
Landmark 4 (Depth) 7.1992 -40.1190 -23.1830 46.8915
Landmark 4 (‖δ‖2) 1.0508 3.8690 7.2343 6.4380

Landmark 5 (CBCT) -12.7500 -26.2500 -55.3691 62.5888
Landmark 5 (Depth) -14.3640 -27.5470 -60.8890 68.3567
Landmark 5 (‖δ‖2) 1.6140 1.2970 5.5199 5.7678

Landmark 6 (CBCT) -18.7500 -25.7500 14.8985 35.1652
Landmark 6 (Depth) -17.1540 -26.0800 8.4261 32.3330
Landmark 6 (‖δ‖2) 1.5960 0.3300 6.4724 2.8321

Landmark 7 (CBCT) -31.2500 -20.7500 36.4012 52.2702
Landmark 7 (Depth) -29.2350 -21.6840 29.8170 47.0525
Landmark 7 (‖δ‖2) 2.0150 0.9340 6.5842 5.2177

Landmark 8 (CBCT) -40.2500 -21.1774 -31.2500 55.1825
Landmark 8 (Depth) -40.3190 -21.8690 -36.6750 58.7276
Landmark 8 (‖δ‖2) 0.0690 0.6916 5.4250 3.5451

TRE 1.40 ± 0.65 1.97 ± 1.33 7.11 ± 1.33 7.60 ± 1.55
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6.4 Influence of Camera and Phantom Choices

Table 6.11: Comparision between Intel RealSense F200 and Microsoft Kinect 360 - Accuracy
Test in TRE.

δx δy δz ‖δ‖2

TRE 1 (F200) 1.26 ± 0.73 1.94 ± 1.50 0.98 ± 0.95 2.91 ± 1.10
TRE 1 (Kinect) 0.58 ± 0.56 2.87 ± 1.97 5.61 ± 1.72 6.54 ± 2.04

TRE 2 (F200) 0.72 ± 0.78 2.46 ± 1.12 1.12 ± 0.87 2.91 ± 1.37
TRE 2 (Kinect) 1.09 ± 0.49 3.19 ± 0.83 7.30 ± 1.19 8.11 ± 1.02

TRE 3 (F200) 0.83 ± 0.57 0.72 ± 0.52 1.40 ± 1.00 1.92 ± 0.98
TRE 3 (Kinect) 1.40 ± 0.65 1.97 ± 1.33 7.11 ± 1.33 7.60 ± 1.55

The results show that the error mainly comes from the z-axis. Therefore, the calibration
quality indeed depends on the quality of the depth measurement provided by the camera.
The further the object is, the more the error in depth measurement there is. Intel RealSense
camera has an average accuracy of 2.58 mm while Kinect camera only achieve an averages
accuracy of 7.42 mm.

(a) Pose 1 (b) Pose 2

Figure 6.3: Two arbitrary calibration phantoms.

Theoretically, arbitrary objects whose surface is visible in both CBCT volume and depth
camera is suitable for the calibration. To examine and evaluate this hypothesis, two ar-
bitrary objects — a stone and a spines phantom (Fig. 6.3) are used for evaluation. TRE
is used to evaluate the accuracy of the calibration using arbitrary objects. The results are
shown in Table 6.12 below.
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Table 6.12: Compaision of calibration using arbitrary objects using TRE.

TRE δx δy δz ‖δ‖2

Calibration Phantom 0.83 ± 0.57 0.72 ± 0.52 1.40 ± 1.00 1.92 ± 0.98
Spine 1.03 ± 0.47 1.53 ± 1.27 1.88 ± 1.14 2.87 ± 1.28
Stone 1.00 ± 0.57 3.35 ± 2.39 2.46 ± 1.35 4.77 ± 2.05

We found that arbitrary objects like the spine phantom which have unambiguous 3D
shape and sufficient visibility in CBCT and depth camera can achieve reasonable accuracy
of 2.87 mm, although the computation time is significantly longer due to the fact that the
phantom contains more geometric structures and hence requires more points to represent.
On the contrary, the stone object gives poor infrared reflectance, which yields poor depth
information, and therefore results in poor calibration.
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In the last chapter, a pre-clinical study for evaluating the system and comparing with
existing systems is presented. It is followed by a conclusion for summarizing the work, as
well as future work for improving the system.

7.1 Pre-Clinical Study

Figure 7.1: The three visualization compared in the preclinical study. (a) Conventional X-
Ray systems, (b) Camera augmented mobile C-arm system, and (c) Mixed real-
ity visualization system proposed in the thesis Sources: images are taken from [10]

47



7 Usability Evaluation and Conclusion

A pre-clinical study comparing the system proposed in this thesis with the conventional
X-Ray system and Camera augmented mobile C-arm system was conducted [10]. In the
study, 7 surgeons were invited to perform a k-wire placement task using the three systems
and the evaluation was measured by surgical efficiency (total time spent, number of X-Ray
images acquired, total radiation dose, k-wire placement accuracy) and surgical task load
(surgical task load index defined by [37])). Table 7.1 and Table 7.2 below summarizes all
the measurements in the study for the three systems.

Table 7.1: Preclinical study evaluation results
Participants

1 2 3 4 5 6 7
S1: Conventional X-Ray system

Total Time Spent (sec) 937 686 617 464 636 388 432
Number of X-Ray Images 80 47 44 33 32 21 29
Radiation Dose (cGycm2) 7.68 1.73 3.54 4.38 5.62 2.69 5.38
Placement Error (mm) 3.08 7.88 11.43 3.01 1.87 2.27 2.72
Surgical Task Load 76 25.67 41.67 17.67 53.33 19.33 70.67

S2: Camera augmented mobile C-arm system

Total Time Spent (sec) 360 431 521 295 436 691 768
Number of X-Ray Images 19 13 20 13 18 20 30
Radiation Dose (cGycm2) 3.07 1.3 1.57 1.92 1.42 2.38 5.56
Placement Error (mm) 7.92 2.69 3.85 4.23 4.88 3.44 1.74
Surgical Task Load 60.33 10 20 21.67 26 22.33 62.33

S3: Mixed reality visualization system

Total Time Spent (sec) 182 180 380 181 190 254 339
Number of X-Ray Images 1 2 2 2 2 3 3
Radiation Dose (cGycm2) 1.76 1.9 1.48 1.44 1.55 1.47 1.59
Placement Error (mm) 7.38 6.39 8.45 6.53 1.39 2.31 3.48
Surgical Task Load 20.33 5 24.33 23 11.33 8.67 30.33

Table 7.2: The standard deviation of Table 7.1.
S1 S2 S3

Total Time Spent (sec) 594 ± 188 500 ± 172 243 ± 84
Number of X-Ray Images 40.86 ± 19.38 19.00 ± 5.72 2.14 ± 0.69
Radiation Dose (cGycm2) 4.43 ± 2.00 2.46 ± 1.50 1.60 ± 0.17
Placement Error (mm) 4.61 ± 3.62 4.11 ± 1.97 5.13 ± 2.72
Surgical Task Load 43.48 ± 24.03 31.81 ± 20.76 17.57 ± 9.33
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7.2 Conclusion

The evaluation shows that the system (S3) significantly speeds up the total time spent,
and significantly reduces the number of X-Ray image required, compared to S1 and S2.
Furthermore, S3 and S2 significantly reduces the radiation dose compared to S1; while
there is no significant difference between S2 and S3 found in terms of radiation dose. Last
but not least, there is no significant difference in placement error among the three systems.
On the other hand, the surgical task load also shows a significant difference between S1
and S3, which indicates that the proposed system significantly helps to reduce the surgical
task load. Therefore, the evaluation supports that the purposed system has clear advan-
tages over the existing systems while maintaining necessary placement accuracy.

7.2 Conclusion

In this thesis, we explored the state of the art of visualization system for orthopedic and
trauma surgery, from the 2D-2D augmented reality visualization, to 2D-3D/3D-2D aug-
mented reality visualization. We are amazed by the radiation exposure reduction by using
augmented reality for intra-operative visualization, and realize the current difficulty of
depth perception in medical images in the OR. Therefore, we proposed a new system,
which provides 3D-3D mixed reality visualization for the interventions.

The calibration makes use of KinectFusion for a reliable surface reconstruction during
CBCT scan, calibration phantom surface point clouds extraction, and point clouds to point
clouds registration by SAC-IA with FPFH and ICP. Our experiment results showed the
method is repeatable and the system achieved reasonable accuracy of 2.58 mm. With the
calibration result, the system provides multiple interactive views at any desired angles,
which gives a mixed reality visualization of the patient surface, the DRR of CBCT volume,
and flying point clouds of moving objects. A pre-clinical study was conducted to evaluate
the system compared to conventional X-Ray system and CAMC system. The study showed
our system reduces the radiation dose, and more importantly significantly reduces the
total operation time and decreases the surgical workload.

In a nutshell, we stepped further from the literature, from 2D/3D-3D/2D visualization
to 3D/3D visualization. We proposed a method to calibrate two 3D imaging systems and
utilized depth cues to provide better depth perceptual visualization. The method is re-
peatable and the system has clear advantage over existing systems.

7.3 Future Work

Although the proposed system enhanced the intervention in terms of time, radiation dose
and surgical workload, there are certain limitations, which can be further improved. In
this last section, the limitations and further improvements are discussed.

The camera is calibrated to the CBCT volume when the C-arm is in its upright position.
When the C-arm is moved, the visualization is out-dated. To compensate, patient or C-
arm tracking is needed, so that the system is able to update the visualization based on the
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7 Usability Evaluation and Conclusion

new patient or C-arm position. There are many methods to achieve it, such as marker-base
tracking, which attaches a marker onto patient surface and track it with the camera. An-
other way is marker-less tracking, which uses the patient surface obtained by the depth
camera to perform frame-by-frame ICP-base tracking. More sophisticated method to com-
bine RGB and depth information can be used to provide marker-less patient tracking.

In this thesis, the phantom design is only a proof of concept. A more advanced phantom,
which has more reliable features in CBCT and in depth camera, can be designed to achieve
better accuracy. For example, a model with fiducial markers visible in CBCT with a known
surface can be designed, which can give accurate marker positions in CBCT while its sur-
face can be reconstructed by depth camera and matched with the model surface for getting
the known marker positions, and hence perform paired points registration for a better cali-
bration. By this means, it reduces the error in surface segmentation in CBCT. Furthermore,
it would be nice if the method can not only recover the transformation between CBCT and
depth camera, but also all the CBCT projections relative to the depth camera position. It
can also be achieved by a better phantom design. Such a phantom can be used to validate
or re-verify the calibration result, which is required in a clinical practice.

On the other hand, depth camera based tool tracking can be used for augmenting the
surgical tool into the scene, so that the system can also serve as a navigation guiding sys-
tem. Furthermore, with tool tracking, the visualization can be further improved. For
example, the interactive 3D visualization technique in [36] can be utilized to display an
interactive X-Ray image according to the current tool position inside the body, which can
help for the tool navigation.

7.4 Publications

The system presented in this master thesis was presented and evaluated in the following
journal papers, accepted at the "Information Processing for Computer Assisted Interven-
tions (IPCAI)", Heidelberg, Germany, June 2016 and published in "International Journal of
Computer Assisted Radiology and Surgery" by Springer, March and April 2016.

Marius Fischer, Bernhard Fuerst, Sing Chun Lee, Javad Fotouhi, Severine Habert, Simon
Weidert, Ekkehard Euler, Greg Osgood, and Nassir Navab: "Preclinical usability study of
multiple augmented reality concepts for K-wire placement". International Journal of Com-
puter Assisted Radiology and Surgery, 2016, doi:"10.1007/s11548-016-1363-x"

Sing Chun Lee, Bernhard Fuerst, Javad Fotouhi, Marius Fischer, Greg Osgood, and Nas-
sir Navab: "Calibration of RGBD camera and cone-beam CT for 3D intra-operative mixed
reality visualization", International Journal of Computer Assisted Radiology and Surgery, 2016,
doi:"10.1007/s11548-016-1396-1"

And the extended work with tool tracking was submitted to International Conference
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7.4 Publications

on Medical Image Computing and Computer Assisted Interventions (MICCAI), Athens,
Greece, October 2016.
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