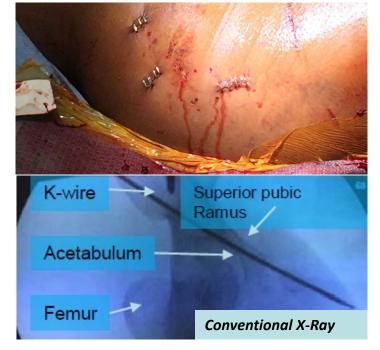
Multi-modal imaging, model-based tracking, and mixed reality visualization for orthopaedic surgery

Sing Chun Lee¹, Bernhard Fuerst², Keisuke Tateno^{3,4}, Alex Johson⁵, Javad Fotouhi¹, Greg Osgood⁵, Federico Tombari³, Nassir Navab^{1,3}

1. Computer Aided Medical Procedures, Laboratory for Computational Sensing & Robotics, Johns Hopkins University, Baltimore, MD, USA

- 2. Verb Surgical, Mountain View, CA, USA
- 3. Computer Aided Medical Procedures, Department of Computer Science, Technische Universität München, Munich, Germany
- 4. Canon Inc., Shimomaruko, Tokyo, Japan
- 5. Orthopaedic Trauma, Department of Orthopaedic Surgery, Johns Hopkins Hospital, Baltimore, MD, USA

ABORATORY FOR


Technische Universität München

Conventional Method for Orthopaedic Surgery

- Clinical problem: Bone fracture
- From open surgery to nowadays minimally invasive surgery (MIS)
- MIS resolution: Insert K-wire and screw to fixate the fracture *relying on X-Ray*
 - ✓ Faster and better recovery
 - Less blood loss
 - ✓ Avoidance of damages to surrounding tissues
 - More difficult surgical task
 - X Less intuitive targeting with 2D projections
 - X Often undergo multiple failure attempts
 - High X-Ray usages
 - X Surgical team frustration

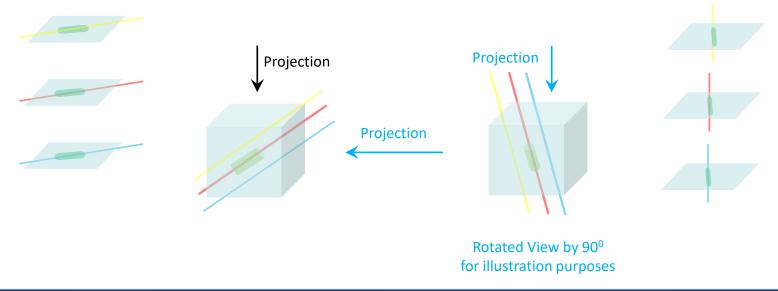

[1] M. Fischer, B. Fuerst, S.C. Lee, J. Fotouhi, S. Habert, S. Weidert, E. Euler, G. Osgood, N. Navab, "Preclinical usability study of multiple augmented reality concepts for K-wire placement". In: International Journal of Computer Assisted Radiology and Surgery, June 2016, Volume 11, Issue 6, pp 1007-1014

Image Source: [1]

Main Challenge in Orthopaedic Surgery

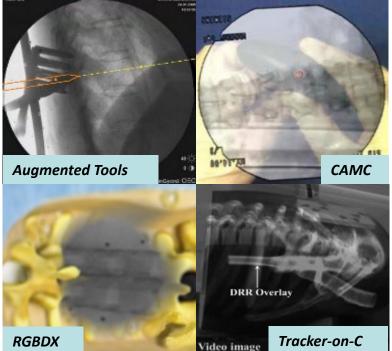
- Not enough information in a single **2D X-Ray for the targeting in 3D**
- Need to back and forth to verify in two orthogonal views

State-of-the-art

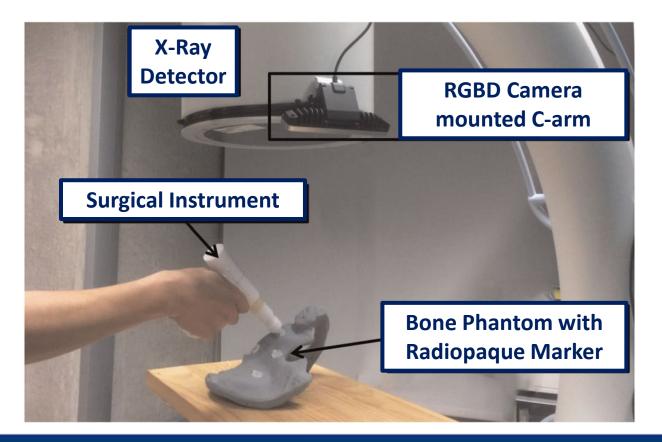
- Augmented Tools using Navigation System^[2]
- Camera Augmented Mobile C-arm (CAMC)^[3]
- RGBDX^[4]
- Tracker-on-C^[5]

→ Towards Mixed Reality for Data Visualization

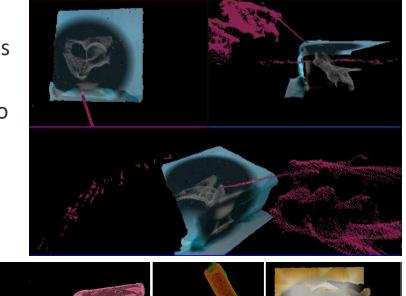
[2] van de Kraats EB, van Walsum T, Kendrick L, Noordhoek NJ, Niessen WJ (2006) Accuracy evaluation of direct navigation with an isocentric 3d rotational X-ray system. Med Image Anal 10(2):113–124

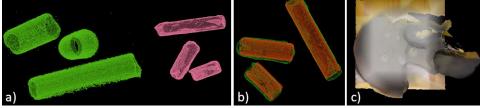

[3] Navab N, Heining SM, Traub J (2010) Camera augmented mobile c-arm (camc):

calibration, accuracy study, and clinical applications. Med Imaging IEEE Trans 29(7):1412–1423


[4] S. Habert, J. Gardiazabal, P. Fallavollita, N. Navab. RGBDX: first design and experimental validation of a mirror-based RGBD Xray imaging system International Symposium on Mixed and Augmented Reality (ISMAR), 2015

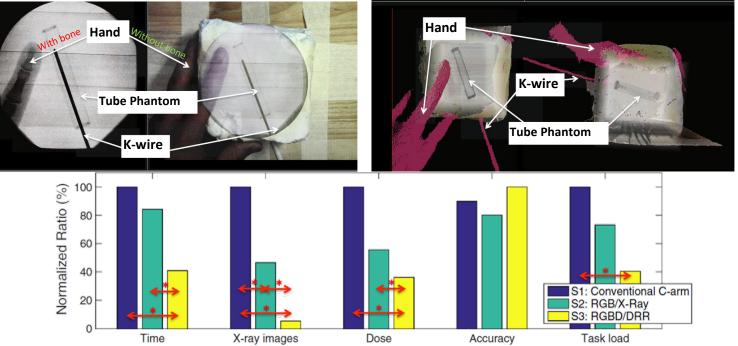
[5] Reaungamornrat, S.; Otake, Y.; Uneri, A.; Schafer, S.; Mirota, D.J.; Nithiananthan, S.; Stayman, J.W.; Kleinszig, G.; Khanna, A.J.; Taylor, R.H.; Siewerdsen, J.H., "An on-board surgical tracking and video augmentation system for C-arm image guidance," in *International Journal of Computer Assisted Radiology and Surgery (IJCAR), 2012*


Mixed Reality Visualization System Setup



Mixed Reality Visualization

- 1. Phantom scan in both cone-beam computed tomography (CBCT) and depth camera spaces
- 2. Using Fast Point Feature Histogram (FPFH) and Iterative Closest Points (ICP) algorithm to recover the spatial relationship
- 3. Enable the mixed reality visualization^[6]
 - Multiple arbitrary views for navigation
 - Live point clouds feedback in all views
 - Directly working on intra-operative medical data
 - More intuitive to understand tools and anatomy relationship



[6] S.C. Lee, B. Fuerst, J. Fotouhi, M. Fischer, G. Osgood, N. Navab, "Calibration of RGBD camera and cone-beam CT for 3D intra-operative mixed reality visualization". In: International Journal of Computed Assisted Radiology and Surgery, June 2016, Volume 11, Issue 6, pp 967-975

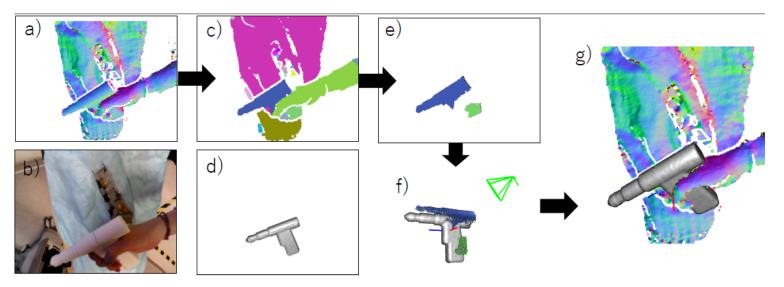
Computer Aided Medical Procedures

Mixed Reality Visualization for Better Orthopaedic Surgery

• Evaluation study on simple tube phantom

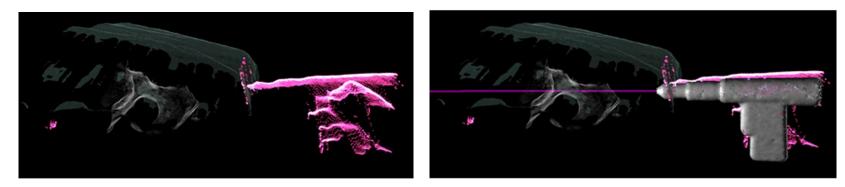
[1] M. Fischer, B. Fuerst, S.C. Lee, J. Fotouhi, S. Habert, S. Weidert, E. Euler, G. Osgood, N. Navab, "Preclinical usability study of multiple augmented reality concepts for K-wire placement". In: International Journal of Computer Assisted Radiology and Surgery, June 2016, Volume 11, Issue 6, pp 1007-1014

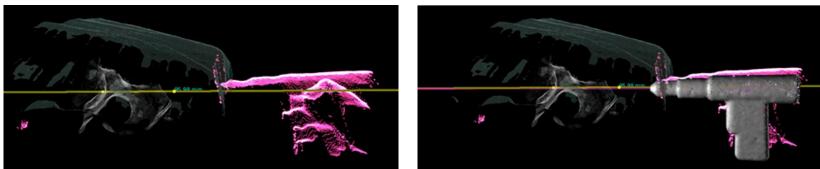
Towards to Synthetic Model – What is Missing?


- Evaluation study on synthetic bone phantom
 - Difficulty to orientate with the live point clouds
 - Noise in the point clouds introduce confusion of the understanding
 - Some views only contains partial point clouds due to difficult perspective to the camera
- Requires better data representation
 - Complete model
 - Clear projected drill path for easier alignment
 - Better guidance for orientating in multiple views

Depth Camera Model Based Instrument Tracking

• Customized model based dense simultaneous localization and mapping (SLAM) using a single depth camera

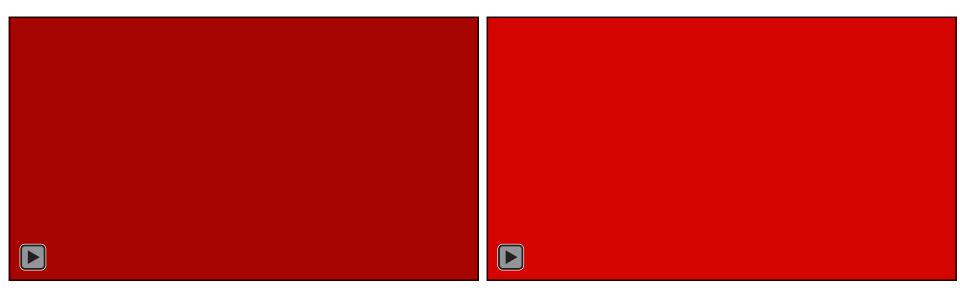




[3] K Tateno, F Tombari, N Navab, "Real-time and scalable incremental segmentation on dense slam". In: IEEE International Conference of Intelligent Robots and Systems, September 2015, pp 4465-4472

Suggested Workflow with Our Mixed Reality System

• Transformed the surgical task to a simple line alignment in multiple views



Computer Aided Medical Procedures

Demo

Computer Aided Medical Procedures

Tracking Accuracy

- TRE measurement of the markers by pointing: average accuracy of 3.4mm.
- Accuracy depends on level of occlusions

mm	δχ	δγ	δz	$\ \boldsymbol{d}\ _2$
Partial occlusion	6.02 ± 1.80	1.35 ± 0.85	5.78 ± 0.41	6.40 ± 1.85
Low occlusion	1.28 ± 0.12	0.30 ± 0.19	1.68 ± 0.64	1.36 ± 1.12
High occlusion	17.5 ± 4.70	7.50 ± 2.18	8.91 ± 4.47	20.68 ± 4.54

Tracking Quality

- Placed the tool at different locations without moving it
- When the shape appears more symmetric, it appears bigger errors

mm	δx	δy	δz	$\ \boldsymbol{d}\ _2$			
Pose 1	1.09	0.83	4.03	4.26			
Pose 2	2.45	4.50	0.65	5.16			
Pose 3	0.67	1.14	0.18	1.33			
Average	1.40	2.16	1.62	3.04			

Computer Aided Medical Procedures

d)

Guidance Quality

- Accuracy depends on occlusion levels
- Measured the distance to line distance, which indicates potential guidance quality
- Around 3mm on average

	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5
d ₂	3.0563	3.4618	6.3178	3.0304	2.5764

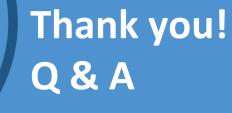
Computer Aided Medical Procedures

Conclusion & Discussion

- Simple setup compared to external tracking devices
- Provides quick guidance support by transforming the 2D-3D navigation task to line alignments in multiple views
- Evaluation shows that it supports user quickly find a better entry point and orientation (accuracy up to 3mm on average)
- ✓ Transformed the core surgical task to line alignment tasks in multiple views
- ✓ Reduced X-rays dose
- ✓ Shortened operating time
- Intuitive and quick tool guidance support
- X Not accurate enough for exact placement or robotic automated placement
- X Perceptual visualization should be further improved

Future Work

- Improve the system's accuracy
- Evaluate the system with cadaver study
- Incorporate the concept into HMD (e.g. Hololens)
- Consideration of mid-air visualization technique



Technische Universität München